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PREFACE 

This book focuses on the study of linear systems and represents an effort to 
organize a broad range of information about this topic in a fairly elementary 
fashion. Writing in the 1970s, I have had the privilege of drawing key ideas from 
the work of philosophers, engineers, and methodologists in the life sciences. 
Some innovations are added here, but the central intention is not so much to 
break new ground as to cultivate that which already is tilled and so instill a wider 
awareness and appreciation for this field and its products. 

The book is addressed to a fairly wide audience of practicing social scientists, 
students, and interested laymen. Rather than compromise ideas in order to reach 
this wide audience, I have relied heavily on the pedagogical device of causal 
diagrams. These diagrams allow one to visualize and comprehend even some of 
the more intricate topics in social science methodology, and following rules for 
manipulating diagrams allows almost anyone to carry out many mathematical 
analyses with the precision of an algebraist. The pedagogical advantage offered 
by causal diagrams may suggest that they are a “rough and ready” approach to 
systems analysis. This is not the case. Causal diagrams with their set of rules in 
themselves constitute a form of mathematics. Such diagrams are employed daily 
by practicing scientists and engineers. 

The teacher examining this book may wonder where it fits in a traditional 
curriculum. Statistics are discussed in detail, but the emphasis here is on 
statistical description of social systems rather than on the usual statistical 
inference from samples to populations. Substantive topics are analyzed in 
examples and in exercises, but the specific examples of models range over most 
of the field of sociology and comprehend a number of theoretical perspectives. 
Nevertheless, as a text on model building this volume can be employed in 
methodology and statistics courses that focus on the use of data for testing and 
elaborating theories and it can serve as an auxiliary source in courses on theory 
construction. 
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 viii Preface 

Over the last decade numerous colleagues and students have helped to prepare 
me to write this book. Four were especially important teachers: Edgar Borgatta, 
George Bohrnstedt, Arthur Goldberger, and Dennis Willigan. James A. Davis, 
Duncan MacRae, Jr., and Ronald Burt provided valuable criticisms of early drafts 
of some chapters. So also did many anonymous student readers, including one 
wag (since identified as Donna Cowan) who suggested titling the book, “Studies 
in Arrow-Dynamics.” Gert Rippy typed the original manuscript for use in courses 
at Chapel Hill. 

In a more personal direction I have enjoyed rich support from Elsa Lewis and 
Stephen Heise, whose vitality and wit repeatedly reentered me from regions of 
abstraction while I was writing this book. 

 
DAVID R. HEISE 

Department of Sociology, 
University of North Carolina, Chapel Hill  
May 1975 



 

PREFACE TO  
THE ELECTRONIC
EDITION 

In the 1970s and 1980s Causal Analysis was adopted frequently as a text in 
quantitative sociology courses—even in the Soviet Union, where a Russian 
translation became available in 1982. Notwithstanding this activity, Wiley let the 
book go out of print in the 1980s, and returned the copyright to me.  

Professors who had used Causal Analysis in their graduate courses urged me to 
get the book re-issued by another publisher. However, the timing seemed 
inauspicious with positivism under attack, the discipline increasingly focused on 
qualitative research and post-modernism, and publishers reluctant to invest in 
advanced texts. 

Technological developments now have opened a way to make the book 
available again to those who want to use it. One technological basis is the World 
Wide Web which supersedes traditional publishing as an economical means of 
distributing educational resources. A second basis is computer software for 
generating electronic documents that can be perused on a computer or printed 
with traditional paper and ink. The third technological development consists of 
scanners and optical-character-recognition programs for digitizing printed texts 
and reproducing page layouts of any complexity. 

I have scanned Causal Analysis, reconstituted it as an Adobe Acrobat PDF file, 
and placed the book on the Web for downloading. Any individual is welcome to 
download and print the electronic edition of Causal Analysis. University 
instructors may reproduce multiple copies for students in their classes. 

I am making Causal Analysis available to educators and students again 
because I believe the book still has educational value.  

Causal Analysis discusses issues that arise in constructing quantitative theories 
about sociological systems. The issues often involve statistics because social 
systems generate statistical phenomena, and statistical phenomena can be used to 
infer the nature of a social system. However, the focus of Causal Analysis is on 
theory rather than on statistics. Thus Causal Analysis is as pedagogically relevant 
today as it was 25 years ago, despite development during the intervening 
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 years of increasingly refined statistical procedures for estimating system 
parameters. Related to the theory-construction theme, the book uses flowgraphs 
as an iconic medium for specifying systems, for deriving a system’s statistical 
outcomes, for understanding parameter estimations, and for analyzing system 
dynamics. Rules for interpreting and manipulating flowgraphs are provided in the 
book. 

One-fourth of the pages in Causal Analysis are devoted to presenting and 
answering exercises about the following substantive topics:  
• Stratification and intergenerational mobility;  
• Political economies relating family, education, and justice institutions in 

urban settings;  
• Economic bases for sociocultural development, and for the development of 

science and technology;  
• Management of human aggression, with specific focus on international arms 

races, and on violence among prison inmates; 
• Social interactional systems dealing with maintenance of status, and with 

social enhancement and control of talent;  
• Social-structural and normative sources of attitudes about abortion, alcohol, 

and authority; and cultural, individual, and error components in attitude 
measurements.  

These sociological topics remain as relevant in the 21st century as in the 20th.  
Document Issues 

The text in the electronic edition of Causal Analysis is digitized—it may be 
computer-searched, and passages may be copied, and pasted in other documents. 
Digitizing resulted in somewhat different formatting of lines than in the original 
book. The text of the electronic edition is somewhat different than the text in the 
original book also because typographical errors that appeared in the printed 
version have been corrected in the digitized text. Nevertheless, each page of the 
electronic edition contains the same words as the corresponding page in the 
original book, so a reader may confidently reference texts by page, as if having 
the original book in hand. Subtitles, diagrams, illustrations, and equations are 
positioned as they were in the original book, so pages in the electronic text look 
similar to pages in the original text. 

All diagrams and most equations in the electronic edition are photocopies of 
diagrams and equations in the printed edition. Four drawings in Chapter 1 were 
redrawn with contemporary computer-graphics software. 

Please inform me about typographical errors (heise@indiana.edu). I will 
remove identified errors from the on-line PDF file. 

 
DAVID R. HEISE 

Department of Sociology, 
Indiana University, Bloomington  
June 2001 
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PROLOGUE 

GHAZALI SAYS: 

According to us the connexion between what is usually believed to be a cause 
and what is believed to be an effect is not a necessary connexion; each of two 
things has its own individuality and is not the other, and neither the affirmation 
nor the negation, neither the existence nor the non-existence of the one is implied 
in the affirmation, negation, existence, and non-existence of the other—e.g., the 
satisfaction of thirst does not imply drinking, nor satiety eating, nor burning 
contact with fire, nor light sunrise, nor decapitation death, nor recovery the 
drinking of medicine, nor evacuation the taking of a purgative, and so on for all 
the empirical connexions existing in medicine, astronomy, the sciences, and the 
crafts. For the connexion in these things is based on a prior power of God to 
create them in a successive order, though not because this connexion is necessary 
in itself and cannot be disjoined—on the contrary, it is in God's power to create 
satiety without eating, and death without decapitation, and to let life persist 
notwithstanding the decapitation, and so on with respect to all connexions. 

I SAY: 

To deny the existence of efficient causes which are observed in sensible things is 
sophistry, and he who defends this doctrine either denies with his tongue what is 
present in his mind or is carried away by a sophistical doubt which occurs to him 
concerning this question. For he who denies this can no longer acknowledge that 
every act must have an agent. The question whether these causes by themselves 
are sufficient to perform the acts which proceed from them, or need an external 
cause for the perfection of their act, whether separate or not, is not self-evident and 
 ———— 
Reprinted from Averroes' Tahafut AI-Tahafut (The Incoherence of the Incoherence), 
translated by Simon van den Bergh (London: Luzac & Company Ltd., 1954), Volume I, 
pages 316, 318, with permission of the E. J. W. Gibb Memorial Trust and the publishers. 
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 2 Prologue 

requires much investigation and research. And if the theologians had doubts 
about the efficient causes which are perceived to cause each other, because there 
are also effects whose cause is not perceived, this is illogical. Those things whose 
causes are not perceived are still unknown and must be investigated, precisely 
because their causes are not perceived. ... 

AVERROES (1126-1198 A.D.) 



 

1CAUSALITY  AND  
CAUSAL  ANALYSIS 

The notion of causality applies whenever the occurrence of one event is reason 
enough to expect the production of another. Causal thinking relates to activity 
because occurrence of an event implies some form of change. Causal analysis 
procedures, however, usually focus on configurations of events—over time or at a 
single time—rather than on changes as such. Causation generates event patterns, 
and studying the patterns can provide insights into the causal relationships that 
generated them. 

Causal thinking is applied regularly in everyday experiences, especially when 
objects are manipulated or changed from one state to another. Perhaps this is why 
manipulation seems so important in the establishment of causal relations and why 
causal explanations seem to provide not only a sense of understanding but also of 
potential control. Causal explanations can be abstracted beyond manipulations or 
at least to the point at which manipulations are purely hypothetical; for example, 
it might be said that the sun's gravitational field causes certain peculiarities in the 
motions of the planets even though there is no possibility of experimental proof. 
With the concept generalized this way it is possible sometimes to examine 
causality non-experimentally by using existing patterns in events. 

The possibility of causal analysis and inference without manipulation is 
crucially important in the social sciences in which so many political, practical, 
and ethical problems narrow the possibilities of implementing classical 
experiments. Thus our first goal is to define causality generally enough so that the 
concept will apply even when manipulative control is unattainable. 

CAUSAL ORDERING 

Events are the starting point in causal analysis. An event is the occurrence of a 
particular state, or a configuration of states, in some entity. Mere changes 
 3 



 4 Causality and Causal Analysis 

in location or physical orientation of an entity constitute elementary events. 
Events may also be defined in more abstract terms and be signaled by changes in 
observable characteristics, by changes in rate of activity, or by dispositional 
changes (i.e., changes in the potential for other events). 

The notion of causality becomes relevant when events are ordered and 
structured in certain ways. First of all, saying that one event causes another 
requires that the first event—call it C—produces an expectation for the 
occurrence of the second event, E. A similar expectation does not exist in the 
reverse direction. If, for some reason, we know only that E has occurred, we have 
no special reason to believe that C will occur or even necessarily has occurred 
beforehand. These points can be summarized in tabular form, as shown in 1.1. 

1.1 E 
 does not 
 occur occurs 

occurs yes no 

yes yes 
C 

does not 
occur 

“Yes” means that “this combination can exist” and “no” means “this 
combination cannot exist.” The pattern corresponds to the statement that 
“C causes E,” which implies more specifically that “C cannot occur 
without E occurring.” 

The table in 1.1 might be read as follows: occurrences of C imply occurrences of 
E but occurrences of E do not imply occurrences of C; or occurrences of C are 
sufficient but not necessary for occurrences of E. 

The notion that C implies E is crucial to causal thinking but by itself it is not 
enough to capture the essence of causality. Implication merely relates the 
possibilities of various co-occurrences of events without any restrictions on their 
timing or physical organization; for example, without taking timing and 
organization into account, the pattern in 1.1 might be interpreted alternatively as 
“occurrences of C develop out of occurrences of E.” 
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A B implies 

 

Consideration of temporal ordering clarifies the way in which the logical 
implication is to be read. Effects do not occur before their causes. A cause always 
precedes its effect in the sense that the causal event always begins before the 
effect begins. By combining the logical and temporal criteria we obtain a more 
adequate conception of causality. One suspects the existence of a causal 
relationship when occurrence of one event implies later occurrence of another. 

The addition of the temporal-priority condition distinguishes causal from 
developmental relationships in which one event implies another but the second 
occurs before the first. These two types of relationship are illustrated in 1.2. 

1.2    A causal relationship is one in which occurrence of a first event is a 
sufficient condition for the occurrence of a later event. 

A developmental relationship is one in which occurrence of a first event is 
necessary for the occurrence of a later event. 

 
Time 

implies C E 

Causality does not require the absence of E when C is absent. There may be no 
occurrence of C at an earlier time, yet E occurs anyway. In essence this allows 
that E may be caused by events other than C. So, although it is true that “an effect 
does not occur before its cause,” we must recognize that an effect may be 
produced by one of its causes before the occurrence of another of its causes. 
Hence, to be precise, the first diagram in 1.2 should receive the following 
interpretation: C causes E only if an occurrence of E is invariably found after an 
occurrence of C, even if E were not in evidence beforehand. 

A combination of the conditions of logical and temporal ordering provides a 
better statement concerning causality than either condition alone but the 
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result is still inadequate. For one thing, this formulation would allow us to 
imagine that any event causes any other event under the untestable presumption 
that the second event invariably follows the first “somewhere in the universe.” 
We need to recognize explicitly that causality operates under physical 
constraints. Moreover, causal relations do not invariably hold even in restricted 
domains unless some minimal conditions are fulfilled, and this, too, needs to be 
recognized. 

OPERATORS 

Causation depends on an extraordinary tuning of reality at a particular instant 
such that one event transmutes into another. The special organization required for 
causality is evident in a commonly cited example—a match that produces an 
explosion. Burning matches ordinarily do not cause explosions. Explosions result 
only when a lighted match is introduced into a room partly filled with flammable 
gas or is otherwise put in contact with properly packed explosive material. 
Structured circumstances are also involved in even the commonest physical 
instances of causality; for example, force causes motion in a body only if the 
body is adequately rigid (one cannot push a cube of air) and only if it has mass (a 
shadow has form but cannot be lifted). Applied to elementary mechanics, this 
notion of causality depending on extraordinary and transient circumstances seems 
esoteric because the required physical conditions are so ubiquitous, stable, and 
familiar that we take them for granted. The dependence of causation on 
preexisting structures is important, however, in studying social life in which the 
required structures are often absent. Even a fairly general sociological 
proposition like “external threats cause group cohesion” is applicable only to 
certain kinds of people (e.g., not infants) with some minimum of group 
identification and structure. Without the requisite conditions threats may cause 
other reactions such as panic or no reaction at all. 

A material structure or structured process that implements a causal relation is 
called an operator. Causal transmutation of events cannot take place without an 
appropriate operator and the operator must exist before the transmutation it 
supports.  A causal relation need not depend uniquely on a single operator. 
Both biological systems and human manufacturing systems routinely produce 
classes of essentially equivalent structures that implement the same relationships. 
Also,  causal  re la t ions  can f requent ly be  implemented by 
operators  wi th  di f ferent  in ternal  s t ructures  (e .g . ,  a  car  works  
 



 7 Operators 

whether it has a piston engine or a rotary engine). Thus a causal relation is 
dependent developmentally on the existence of a class of operators. 

An operator consists of organized components. The components themselves 
are operators in that they are structures that serve to transmute one event to 
another; for example, an automobile has both an engine and a transmission and 
each of these parts is itself an operator for converting one kind of event into 
another. Moreover, because each component of an operator is an operator, it, too, 
can be analyzed into its subcomponents. Theoretically the process of analysis can 
be continued indefinitely. This analyzability of operators corresponds to 
analyzability of causal relations; that is, the transmutation of event C into event E 
can be analyzed in terms of a set of intervening causal relations manifested within 
the operator and implemented by the operator's components. These relations, in 
turn, can be analyzed into a still more discriminate set of constituent causal 
relations. In principle this analytic process can be continued indefinitely. Thus 
causes and effects are linked by continuous chains of intervening events. 

Analytic dissection of operators and causal relations is an important aspect of 
understanding. We partition novel operators and causal relations into components 
and relations until we feel that we know how the transmutation of one event into 
another occurs—how one event “produces” another. In everyday life we typically 
analyze until we reach the level of familiar, commonly accepted relationships. 
Even scientific analyses rarely continue beyond the point at which further 
partitioning of an operator would require treatment as a statistical aggregate of 
minute structures implementing relations that are the focus of another discipline; 
for example, theoretically we could determine how force applied to a steel ball 
causes directional motion by dropping to the molecular level and analyzing the 
effects of force on individual molecules and their effect on one another within the 
constraints imposed by the structure of the material involved. The motion of the 
ball is then seen as an aggregate effect defined in terms of millions of parallel and 
similar events at the lower level. This, however, is far more detail than is 
typically wanted and we do not ordinarily maintain much interest in such a 
microscopic analysis. Similarly, sociological explanation usually stops short of 
neurological analyses of individuals, psychological interpretation usually stops 
short of biochemical analyses of separate cells, and biochemical studies do not 
often proceed to structural analyses of atoms. 

A set of components alone is not enough to create an operator. The operator 
emerges only when the components are properly related to one another. In fact, it 
is possible to think of an operator as a peculiar and transient 
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S implies O, given L 

 

 
L implies O, given S 

 

configuration—itself a kind of event—produced jointly by the existence of the 
set of parts in conjunction with an organizing connecting process. Operators may 
evolve or they may be constructed, as indicated in 1.3. 

1.3   The parts of an operator, O, can be viewed as a set of things, S, that is 
sufficient to create O when an appropriate organizing (or linking) process, 
L, is operative. Thus the set of parts implies the generation of an operator in 
the presence of an appropriate organizing process. 

One interpretation of this formulation is that availability of parts causes
construction of an operator if an organizing process inevitably occurs. This
formulation provides a “constructive” perspective on operator formation.
When organizing processes are predetermined (say in the form of genetic
mechanisms or a skilled, motivated craftsman), then assembling required
materials is sufficient for the production of particular structures. 

Alternatively, an “evolutionary” perspective results when the set of
components is viewed as preexisting and the organizing process occurs by
chance. 

that is, in the presence of a pool of components, randomly occurring 
linkages generate structures that may serve as operators for new causal 
relationships. 

An operator forms only from compatible components. A component responds 
to only specific kinds of events, and if the component is to work and contribute to 
the action of a larger operator, it must receive the right kind of inputs from 
components that precede it in the system. Often the compatibility 
condition is fulfilled in a simple way, the causal event for one component 
being identical to the outcome event of another. Compatibility however, 
may also be  achieved when one component  is  responsive  to  a  con-  
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figuration of outcomes from other components; for example, the outcome of a 
first component may be needed to “set” a second before it can produce an event 
that serves as an input for a third (a piston in a car engine can do no work unless 
there is a fuel mixture in the cylinder and a spark to ignite the fuel). A component 
may be sensitive to a threshold number of parallel events produced by prior 
components (e.g., a neuron fires only when the stimulation from other neurons 
cumulates to a critical .level). The study of component compatibility involves a 
determination of the responsiveness of one entity to events produced by another 
(or combinations of others). This is a kind of substantive analysis that must be 
done anew in each different area of inquiry. 

Frequently operators can be classified in terms of taxonomies and typologies, 
reducing diversity by treating some operators as equivalent though differing in 
detail. A variety of methods is available for creating these classifications: internal 
compositional analysis; comparisons of patterns of growth or construction; 
assessment of parallelism and complementarity in distribution; clustering in terms 
of the effects produced by different operators; and grouping in terms of functional 
similarity according to parallel positioning within larger systems. Indeed, an ideal 
goal is to define an overall classification that corresponds to all bases 
simultaneously, thus allowing information of one type to be translated readily 
into other meanings. Such inquiries are substantive in the sense that they, too, 
must be done anew for each class of phenomena being studied. 

Fields An effect is the occurrence of a particular state or configuration of states 
in an operator. Consequently an effect has a specific locus in space and time. Any 
second operator that is to be linked to the first to form a higher order operator 
must be compatible; that is, it must respond to the effect produced by the first. In 
addition, it must be properly coordinated in space and time to be in the domain of 
the preceding event. In mechanical devices this is essentially a demand for 
contiguity. Two components must be “touching” for events to be transmitted. A 
more general formulation is needed, however, to cover other phenomena. 

For heuristic purposes events can be conceived as fields originating at the 
operator that produces them but extending in space and time away from their 
initial spatial-temporal location. In general, the greater the distance from the 
origin, the lower the intensity of the field and its ability to generate action in a 
compatible operator. Thus one component is connected to another 
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only if it is within the effective event field of the other. Construction of an 
operator requires, at minimum, the positioning of components so that some exist 
in the event fields of others. 

A causal relation can exist between two events only if some operator effects 
the transformation. Now we see that an operator must be compatible and 
coordinated with a causal event if it is to generate an effect. Consequently we can 
say that a first event is the cause of a second only if the first is coordinated with 
some operator that responds to it and has the capacity to effect the second. 

Thus a particular type of event by itself is never a universal cause of another. It 
has the potential for being a cause only if suitably located in relation to a 
responsive operator. An event that formerly produced no effect might begin doing 
so if a suitable operator is brought within its field. An event that has acted as a 
cause in the past would cease to do so if all relevant operators were removed from 
its field. 

The general principle here is vital in everyday living—soup does not heat 
unless the pan is placed over fire and hunger is not sated unless food is 
swallowed. The principle motivates constructive activities in which two or more 
operators are brought together to create a larger operator with a specific function 
and provides a means of controlling unwanted happenings; for example by 
isolating certain people from the means of implementing their ideas or passions. 

An event field might permeate space in a relatively simple physical way. For 
example, the field of a magnetic or radiant-heat event has uniform intensity in all 
directions but the intensity gradient declines rapidly with distance, and a 
responsive structure would have to be close to the event's origin to be influenced 
by the event. Of course, contiguity is relative. Mechanical event fields have such 
a rapid spatial gradient that the components must be “touching” to influence one 
another. Electromagnetic events have a lesser gradient, thus allowing for a more 
relaxed perspective on contiguity. 

Event fields, however, both physical and social, can also be directed, extended, 
or stored by a variety of means; for example, a person's voice ordinarily provides 
a simple circular field for communicating events, but with the help of special 
devices the field can be directed (by a bullhorn or a megaphone), extended (by a 
telephone or transmission through dense material), or stored (by a 
tape recorder). When special media or devices distort event fields, 
the notion of contiguity with respect to a single locus in ordinary 
space and t ime no longer  helps  us  to  unders tand how operators  
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influence one another. Either we must operate in peculiar ad hoc spaces in which 
the contiguity principle retains its meaning or we must allow for the distortions of 
the event field in ordinary space (e.g., by postulating reproductions of the original 
event at various points in space and time to construct the proper field according 
to ordinary distance principles). 

With the notion of distorted event fields the possibility of an event in one place 
causing an effect in some other remote place has been introduced. This is 
contrary to a traditional canon of causal philosophy: the prohibition against action 
at a distance. Certainly a rigid requirement for “no action at a distance” is too 
restrictive and the field approach is sensible in modifying it to “less potential for 
action with more distance,” thereby accounting for well-known phenomena like 
magnetism and gravitation. It may seem that distorted fields open the possibility 
of no constraints whatsoever. Any two remote events could be causally connected 
merely by postulating that the first has a distorted field reaching to an operator 
for the second. What needs to be added is that operators are necessary to extend 
fields—amplifiers to increase their range, memory devices for storage until later 
times. Consequently a field distortion must itself be causally accountable. 

In general, a field is subject to a causal analysis of more microscopic operators 
acting aggregatively; for example, we might speak of the development of 
authoritarianism in one nation as an event with a field influencing other nations. 
Such a field, however, operates via the medium of individual persons (operators 
in their own right), and, if desired, we could study its statistical mechanics by 
surveying the actions of individuals. Because a field is generated by events at a 
more microscopic level, it can extend from one point to another only if there is a 
structural-causal basis for the extension at a lower level of analysis. In particular, 
distortions of event-fields are not arbitrary. They must be materialistically 
supported and causally interpretable in terms of more microscopic structures. (At 
present, a structural basis has not been postulated for electromagnetic and 
gravitational fields. This suggests that there may be fundamental exceptions to 
the notion of causal construction of fields or that distortions of such fields have 
not yet proved troublesome enough to motivate the identification of still another 
structural level.) 

DEFINITION OF CAUSALITY 

It was suggested at the beginning of this chapter that causality is involved when 
“the occurrence of one event is reason enough to expect the production 
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of another.” A more precise statement is needed to guide and restrict the 
application of the causality principle in theory construction and the design of 
research. 

I.1     An event C, causes another event, E, if and only if 

(a)   an operator exists which generates E, which responds to C, and which 
is organized so that the connection between C and E can be analyzed 
into a sequence of compatible components with overlapping event 
fields; 

(b)  occurrences of event C are coordinated with the presence of such an 
operator—such an operator exists within the field of C; 

(c)   when conditions (a) and (b) are met, when the operator is isolated from 
the fields of events other than C, and neither C nor E is present to 
begin with, then occurrences of C invariably start before the beginning 
of an occurrence of E. 

(d) when conditions (a) and (b) are met, C implies E; that is, during some 
time interval occurrences of C are always accompanied by 
occurrences of E, though E may be present without C or both events 
may be absent. 

Condition (a) reflects the fact that highly structured circumstances must be 
present before there is a possibility of a particular causal relation existing. 
Condition (b) emphasizes that events must be coordinated with such 
circumstances before they can have effects. Together these conditions define the 
physical basis of causality. Causes are related to effects by specifiable structures 
with determinate locations in space and time. 

Temporal directionality is defined in condition (c). Condition (d) states the 
requirement for logical implication from cause to effect. Contemporary methods 
of social research are elaborated largely with respect to the last two criteria. 
Temporal priorities are manipulated in formal experiments and complex 
statistical analyses are used to examine logical dependencies in situations 
confused by many processes. 

CAUSAL INFERENCE 

The preceding discussion has focused on specifying the meaning of causality, 
pointing out the conditions that characterize the kind of relationship between 
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events that is called causal. Now the perspective is reversed. Definition I.1 gives 
the conditions that must be met in order for events to be causally related. 
Consequently these conditions can serve as criteria in deciding whether a causal 
relation exists between two kinds of event. 

Causal inference begins with the assumption that any event might be a cause 
of any other event. We then proceed to eliminate relations that are impossible or 
implausible in particular circumstances. This eliminating approach is dictated by 
the premise that deterministic relations pervade the physical and social universe 
and that they may exist even though humans are unaware of them. If we were to 
construct our models of deterministic relations in terms of those that we know 
exist, the models might be seriously deficient; that is, they might ignore 
important processes and encourage spurious conclusions. Instead models are 
developed by eliminating the relations we are confident do not exist and retaining 
those that we are not sure about as well as those that are known to be operative. 

1.2 One event does not directly cause another if no effective operator is available 
to support the relationship. 

Sometimes it is possible to state with some confidence the kind of operator that 
would be needed to support a given causal relation and to conclude that no such 
operator is present; for example, on this basis we can conclude that the death rate 
in a technological society does not affect air pollution levels. This principle is 
used commonly in social research, often without explicit theoretical discussion, it 
being assumed that the lack of a particular operator is common knowledge. For 
this reason the major fallibility of the approach needs to be emphasized. This 
principle requires the conclusion that there is no operator at all for a given 
relationship, not simply that an obvious operator is missing. Thus we must 
always consider the possibility that different kinds of operator might support the 
relationship and discard these possibilities one by one, using all available 
knowledge on the topic. 

Sometimes it can be concluded, with just one or two possible exceptions, that 
no operator exists for a given relationship. In such a case it may still be 
possible to achieve an interesting level of causal inference by elaborating the 
analysis so that it can be concluded that no direct relation exists between 
events of interest while allowing that there might be an indirect effect by way 
of other events; for example, suppose that we conclude that there are no 
operators that would permit normal variations in a company's productivity 
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to affect the marital adjustment of a worker, except, perhaps, for psychological 
mechanisms involving morale. By including morale explicitly in the analysis we 
can conclude that changes in company productivity do not directly cause changes 
in a worker's marital adjustment, though they may cause changes in morale, 
which in turn may cause changes in adjustment. This statement is substantially 
stronger than saying merely that productivity mayor may not affect a worker's 
marital adjustment. Increasing definiteness in this way is a common motivation 
for elaborating theories beyond a few events of central interest. 

An operator for a given relationship may exist but may be disconnected or 
otherwise ineffective in a particular situation and can be treated as effectively 
absent; for example, a broadcast reporting a foreign invasion might cause panic at 
6 P.M. when millions of radios and TV's are turned on but would not do so at 3 
A.M. when most receivers are dormant. Similarly, a bureaucracy that ordinarily 
transforms certain inputs into corresponding outcomes may cease to operate if 
disorganized by a disaster. Thus special situations can sometimes be identified, or 
created, in which certain causal inferences are possible, even though the same 
inferences are not possible in more general circumstances. 

1.3 An event cannot cause another if the first event is not coordinated with 
existing operators. 

This principle is crucial in the design of classic experiments in which an operator 
is removed from the influence of all events but one in order that a particular 
causal relation may be studied. This may involve removing or immobilizing a 
required set of intervening operators to truncate an event's influence—the notion 
of insulation—or imposing a special operator that diverts or absorbs activity—the 
notion of shielding—or generating counterevents canceling those that are 
unwanted—the notion of homeostatic control. 

Principle 1.3 can also be employed in nonexperimental research to make 
circumstantial inferences about the absence of certain relations; for example, 
cultural developments in one community have no consequences in another if 
there is no social or material interaction between the two. Similarly, historical 
events do not influence individuals who are physically, socially, and 
communicationally removed from them (e.g., isolated prisoners, patients, and 
monks). Events have no certain consequences if the required operators are 
unavailable in a particular situation; for example, ghetto street crimes 
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typically go unpunished unless a lawman is near purely by chance and in these 
circumstances criminal behavior does not cause legal sanctions. Surreptitious 
activities by intent do not stimulate certain operators and successful secrecy 
eliminates causal dependencies between events that otherwise might pertain. 
Moreover, people sometimes create entire settings (e.g., churches and offices) in 
which they are shielded from the influence of distracting events so that some 
ordinary determinancies may be presumed absent in these circumstances. , 

1.4 An event is not caused by other events that occur after it. 

In experiments a particular event is generated to determine whether it influences 
subsequent events without having to wonder whether the other events could have 
caused the manipulation. In nonexperimental research events that have occurred 
earlier and whose influence remains constant (e.g., sexual or racial classification 
of individuals) are selected, whereupon the impact of these events can be 
assessed without worrying that later events may have influenced them. Indeed, 
such early events may be of considerable interest for analytic reasons, even if 
they are not especially interesting theoretically, because they can serve as 
instruments for dissecting complex patterns of reciprocal causation among other 
events (these techniques are discussed in Chapter 5). 

Elimination of a causal relation in terms of temporal ordering is a matter of 
historical study in particular circumstances and does not preclude the possibility 
that causality may exist in other circumstances; for example, once a person has a 
college degree, no increase in wealth, motivation, or knowledge will cause the 
person to become a college graduate—it has already been done—but some 
combination of these factors may cause that outcome for another person with no 
degree. Similarly, in experiments it need not be claimed that the manipulated 
event is never caused by the experimental outcomes—only that the timing has 
been arranged so that this is not true in the particular circumstances. 

Sometimes it may seem that the timing principle is violated in that later 
events determine earlier happenings; for example, because a person must 
have an education in order to become a physician, it may seem that the 
later state of being a physician causes the education. This, however, is a 
developmental relationship. Being a physician implies an education but 
does not cause it. At most, the education is caused by an aspiration to be a 
physician that exists before and during the educational process. 
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1
I.5 If an event A occurs without subsequent occurrence of event B, then A does 
not cause B in the given circumstances. 

This principle of causal inference is based on the logical implication involved in 
causality. In strictly logical terms a single instance of A without B is enough 
evidence to conclude that A does not cause B. In fact, though, it is routine to move 
to a statistical perspective and discount a few instances of A-without-B if A 
usually implies B. One reason is that occurrences of events cannot always be 
observed without ambiguity. One event may mask another and a few instances of 
A-without-B may be due to observational errors. Another reason develops from 
the phrase “in the given circumstances” in statement I.5. If A occurs without B 
(and it is assumed heuristically that B was not masked), it means one of the 
following. 

1. In the particular setting there is no operator for converting A to B.  

2. Such an operator may exist but was not within the field of event A at the 
time of A's occurrence. 

3. Such an operator existed within the field of A but was disassembled, 
unset, or otherwise inoperative at the time of the occurrence of A. 

Generally, when we conclude that A does not cause B, we want to mean that 
(1) is true so that there is some generalizability to the conclusion, at least as long 
as the physical setting remains the same. However, if just (2) or (3) is true, then A 
may cause B in the same setting at another time. Therefore it cannot be concluded 
that A does not cause B, except at the particular time that the negative instance 
occurred. 

Psychological learning experiments indicate that both animals and humans 
treat an occasional causal relation as being real enough to depend on. This 
psychological disposition is conservative in that it eliminates fewer causal 
relations than logic permits, and, as stated above, such a conservative bias is in 
the interest of generalizing beyond transient circumstances at the moment of 
observation. In effect, this tolerance for occasional failures of causality means 
that organisms in general take a statistical rather than a strictly logical 
orientation toward the implication relation in causality. Psychological 
learning experiments also show that humans (and other animals) are adept at 
discovering cues that signal when an operator is effective. Such 
discrimination corresponds to techniques of elaboration and specification in 
science by which we state the exact special conditions under which 
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a causal relation holds and thereby refine statistical inferences in favor of stricter 
statements of determinism. Thus statistical orientation, combined with continuing 
efforts at defining the precise conditions for the existence of a causal relation, 
serves strategically as a funnel, bringing awareness and understanding of causal 
relations that are difficult to observe and even those that are in effect only on 
occasion. 

The statistical perspective may seem to undermine a foundation stone of 
science—the critical observation in which absence of effect proves the absence of 
a relationship. Critical observations are valid only if we are focusing on a 
particular operator that is known to be in working order and properly coordinated 
with an event A. Only then does a single instance of A-without-B lead to the 
generalizable conclusion that the operator does not support the relation “A causes 
B.” Thus a critical observation is a means of determining whether a specified 
operator supports a particular relationship and not whether a particular 
relationship is supported by some unspecified operator. 

Much of the development in social science methodology has been devoted to 
creating sophisticated statistical techniques for discerning correspondence 
between events even when it is rare or when it is masked by occurrences of 
irrelevant events. Because of the conservativeness of the statistical approach (in 
terms of being able to reject relatively few hypothesized relations), special effort 
has gone into developing methods of identifying particular circumstances in 
which an apparent correlation between events disappears, thus indicating that 
events actually are not causally related at all. This technology is a major concern 
in this book, especially in Chapters 3, 4, and 5. 

FLOWS 

Analytic power in causal analysis can be gained by adding further assertions 
about the nature of reality and/or by analyzing only those parts of reality that 
meet certain restrictions. Several different lines of development are possible, and 
the one presented here has been chosen because the basic ideas are ubiquitous in 
contemporary social research, because the analytic principles have been 
elaborated extensively by applied mathematicians and statisticians, and because 
so many phenomena can be represented at least approximately within the 
perspective. 

Henceforth we shall view events as homogeneous flows, subject to 
augmentation and diminishment. By this interpretation any event of interest is 
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a composition of lower level events occurring repeatedly at a given rate as long as 
conditions remain the same. An operator producing a flow is a structure that 
repeatedly generates the same events and operates continuously (at least in 
aggregate) because of a constant influx of stimulating events. Not all events can 
actually be characterized in terms of flows, but the notion is adaptable, and even 
destructive or constructive events can often be characterized as flows within the 
framework of a larger structure—the rate of explosions on a battlefield or the rate 
of assemblies at a factory. Moreover, many social and cultural variables that seem 
purely categorical can be conceived in process terms amenable to a flow 
interpretation; for example, a person's sexual identity can be viewed processually 
as an ongoing presentation of certain kinds of cues in interaction. In this sense 
sexual identity is a lifelong flow of events, anchored in biology and augmented 
by early socialization. 

The principles of causality apply to homogeneous flows; that is, if A and B are 
now conceived to be two different kinds of flow, then A causes B if A (i.e., a kind 
of ongoing process occurring at a given rate) implies B (i.e., a specified amount 
of the other kind of process), if the A flow was attained simultaneously with or 
before the B flow was established, and if the A flow is coordinated with an 
effective, analyzable operator generating B. Similarly the principles of causal 
inference apply. A is not the cause of B if there is no effective operator available, 
if A is uncoordinated with any such operator, if the level of the B process has 
been set before the A process begins, or if variations in the A process do not show 
up as variations in the B process even when other factors are controlled. 

Analyses henceforth are limited to homogeneous flows; otherwise the above 
principles may not hold. A flow is homogeneous if it has the same effect 
regardless of how it is constituted. Thus, in dealing with homogeneous 
flows, we do not need to consider how a causal flow developed historically. 
We need to know only the value of the flow and the relations between the 
flow and subsequent operators in order to conduct causal analyses. It should 
be noted that what is a homogeneous flow in one analysis may not be in 
another; for example, the output of a distillery that sometimes waters its 
product is homogeneous with respect to shipments to distributors (the 
problems of transportation and storage are the same regardless of how the 
product is constituted). This flow, however, is not homogeneous over time 
with respect to the degree of intoxication produced among consumers. 
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Additivity 

One way that the analysis of flows differs from ordinary causal analysis may be 
illuminated by considering an example in which A and B are two distinct causes 
of E. If A, B, and E were ordinary events, then the presence of A or B or both 
would imply the occurrence of E. In particular, the presence of both would 
produce the same E as either A or B alone. On the other hand, suppose that A, B, 
and E are flows. Now A or B alone implies E, but the presence of A and B 
together does not imply the same E. Rather, another flow, E', is implied. This new 
flow is an augmented version of E. With flows the operation of multiple causes 
produces cumulation of effects. 

What is referred to as flow E really is a multitude of different flows, E(1), 
E(2), E(3), and so on, ordered so that when two are implied simultaneously the 
result is another “higher level” flow from the same set. In particular, it is 
presumed that E has an indefinite number of flow levels, that the levels are 
ordered quantitatively, and, indeed, that these levels are associated with ordinary 
numbers in such a way that numerical algebra defines how values cumulate. 
Suppose, for example, that A produces a value of E that we identify as E(2) and B 
produces a value called E(3). Now it is presumed that the values of E have been 
defined so that when both A and B are present the E(5) value is produced. The 
composite outcome is simply the sum of the separate effects. Thus we have an 
“addition rule” for causally analyzing the composition of flows. 

Proportionality of Effect 

A further complication develops when we remember that causes are also flows 
and that the values of a causal flow producing a given effect could be identified 
more precisely; for instance, a precise specification of the relations in the 
example cited above might be the following: A(4) causes E(2), B(9) causes E(3), 
and the effect of A(4) and B(9) together is defined by the addition rule E(2) + 
E(3) = E(5). Now, for different values of A and B we would have to make 
additional statements about the relationships with E; for example, A(2) causes 
E(1), B(6) causes E(2), and so on. Obviously this could become unwieldy with a 
multitude of values for both A and B. What is needed is another simplifying 
principle comparable to the addition rule which allows the implication relations 
between all values of two flows to be stated economically. 
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Relations between the values of flows, from cause to effect, are described by 
using a multiplication rule that defines the value of an effect as proportional to the 
value of the cause; for instance, in the example above it was specified that A(4) 
causes E(2) and A(2) causes E(1). These specifications are now generalized and 
the relation between A and E is described for all values by the formulation “A(i) 
causes E(i/2)” or simply E = A/2. Similarly, the specifications that B(6) causes 
E(2) and B(9) causes E(3) are generalized to B(j) causes E(j/3) or simply E = B/3. 
Thus the basic idea involved in the multiplication rule is that the value of an 
effect can be ascertained from the value of the cause by the following translation 
process. Identify the numerical value of the cause; multiply this value by a 
constant (like 1/2 or 1/3), and the result is the corresponding numerical value for 
the effect. The larger the value of a causal flow, the larger the value of the effect 
flow. Indeed, a strict proportionality exists between the two. 

Actually, by including one minor complication the principle can be extended in 
usefulness. We allow that translation by multipliers alone may always be “off” by 
a certain amount. Hence we may have to add another constant number after 
carrying out the multiplication; for example, if we have relations like “C(4) 
causes E(2) and C(8) causes E(3),” then the appropriate translating formula will 
be “C(k) causes E(1 + k/4) or E = C/4 + 1.” In general, the formula for translating 
from the numerical value of a causal flow to the numerical value of an effect flow 
is E = a + bC, where b is the constant used as a multiplier and a is the number 
used to adjust results by a constant amount. 

When more than one source is available for an effect, the addition rule and the 
proportionality principle together define outcomes. Again, though, it is allowed 
that the translation may always be “off” by a constant amount. Suppose, for 
example, that flow E is produced by both flow A and flow B. Then the complete 
equation for predicting the value of E, given information on the values of A and 
B, could be an equation like E = 4 + A/2 + B /4. If E had three sources instead of 
two, the formula could be the sum of a constant and three terms referring to 
flows. If there were four sources, it could be the sum of a constant and four other 
terms, and so on. 

Negative Multipliers 

Equations of the form E = a + bC provide a flexible and general way of 
describing the effect of a flow C on another flow E. Indeed, such equations 
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allow for possibilities that have not been considered, since either of the param-
eters in the equation (i.e., either a or b) could have a negative value. Actually, a 
minus sign attached to the adjustment constant a does not complicate matters 
much. It simply means that transformation of a causal flow into an effect flow 
must be adjusted by subtracting rather than adding a constant. However, a 
negative value for the multiplier constant b indicates a special kind of causal 
relationship between two flows. This is illustrated by the example in 1.4. 

1.4 Suppose that the causal relationship between two flows is described by the 
equation 

 
 

In this case the adjustment constant is (+10) and the multiplier constant is 
(-½). This equation specifies a special kind of relation between the flows as 
indicated by the following examples: 
 

If C is 2 Then E is 9 
4 8 
6 7 
8 6 

10 5 

Thus the higher the level of C, the lower the level of E. Flow E is inversely 
related to flow C. 

2
10 CE −=

Negative multipliers represent inverse, or negative, relations. The higher the 
value of the causal flow, the lower the value of the effect flow. 

A negative relation would seem to require that the causal flow interfere with or 
suppress the activity underlying the effect flow. Moreover, it would seem that 
negative relations can exist only when the effect flow has an ongoing base level 
of activity independent of the suppressor flow. Otherwise there is nothing to 
suppress. These notions do apply in certain instances of negative relations. 
Suppose, for example, that C is the population of foxes on an island and E 
is the population of rabbits (such quantities are flows because they 
represent the aggregated occurrences of fox and rabbit lives). 
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There is a negative relation here—the more foxes, the fewer rabbits, and it exists 
because foxes interfere with rabbit lives. In addition, the relation can exist only if 
the population of rabbits is maintained, by reproductive and subsistence 
processes, at a sufficiently high level. Were there not an adequate supply of 
rabbits, the foxes would eat them all, and the relation between foxes and rabbits 
on the island would cease to exist. 

On the other hand, conceptualizations of flows sometimes can be elaborated to 
include negative as well as positive levels, in which case negative relations might 
exist without having the effect flow sustained by other factors. An important 
example arises when two mutually inhibiting flows are combined into a single 
flow—call it Z. When dominance by one component flow occurs, levels of Z are 
positive. When dominance by the other component flow occurs, levels of Z are 
negative. The attitude construct appears to be such a variable. Emotional 
reactions to a stimulus can involve feelings of pleasantness or feelings of 
unpleasantness, and these two kinds of response tend to be mutually inhibitory. 
An attitude is the net response—positive if pleasant feelings predominate, 
negative if unpleasant feelings predominate. Once such a bipolar flow is defined 
it is possible to define unconstrained negative relations: the higher the C flow, the 
lower the E flow, with the relationship continuing even into negative values of E. 

It will be seen in later chapters that flows are frequently measured by arbitrary 
scales with a zero point placed at the average level found within a set of 
observations, a procedure that routinely gives negative values for some observed 
cases. This procedure, however, is simply an analytic convenience that eliminates 
adjustment constants from causal equations (see the discussion following 2.12). 
The calculated zero is not necessarily a true zero that represents the absence of 
flow, and negative values are not necessarily true negatives that imply the 
inhibition of positive flow. 

Terminology Conventions 

At this point it is desirable to adjust terminology to correspond with other 
writings on causal analysis. Henceforth a specific type of flow will be called a 
variable unless we want to emphasize its composition from lower level events. 
An equation that describes the causal relation between two variables, for 
example, E = a + bC, is called a “structural equation.” The adjustment constant a 
is simply the “constant.” The multiplier b is a “coefficient” or “structural 
coefficient.” The constant and coefficient together are “parameters” of the 
equation. 
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LINEARITY 

Attention has now been directed to flows of events occurring continuously at a 
microscopic level. In addition, it has been required that a flow can be measured 
in such a way that values due to different causes cumulate additively and also 
that the values of a source relate proportionately to the values of an effect (after 
possibly making a constant additive correction). Together these restrictions of 
focus delimit a special realm for causal analysis—the analysis of linear relations. 
Indeed, linear causal relations involve simply this: that events can be assessed in 
terms of magnitudes, that effects due to different sources combine additively, and 
that levels of effect are proportional to levels of cause after allowing for a 
constant correction. 

Focusing on linear relations, as we have done in this book, leaves many 
possible topics in causal analysis untouched because not all causal phenomena 
can be described in such restricted terms. The justifications for dealing just with 
linear relations are that they have been studied in depth, that powerful analytic 
methods are available for dealing with them, and that many systems of interest 
operate almost linearly as long as the operating conditions remain fairly stable. 
Moreover, focusing on linear relations allows many subtle and useful ideas in 
causal analysis to be developed at an introductory level. 

A linear formulation of a causal relation permits a surprising and valuable 
translation from the language of interrelated states that we have used until now 
into a language of interrelated changes-in-states that will be useful in discussions 
to follow. The basic ideas involved in such a translation are illustrated in 1.5. 

1.5    Suppose that a linear causal relation from C to E is described by the 
 equation: 
 
 2

CE =

 
This implies that the levels of E produced by levels of C are exactly half the 
numerical value of the corresponding C level; for example, C(6) produces 
E(3). The question now is, what would happen if we introduced a change in 
the level of C, say, of 4 units. Continuing the example, this would give a C 
level of C(6 + 4) = C(10) and, using the above equation, we would obtain a 
new level of E as follows: 
 5)10½( ==E
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The new level of E is two units higher than the original; thus a four-unit 
change in C produced a two-unit change in E. 

It might be thought that the amount of change in E depends on the initial 
values of C and E before introducing a change in C. This is not the case, 
however, in a linear relation, as illustrated in the table. 

If C and E and C is increased then E which is a 

is is 4 units to becomes change of 

2 1.0 6 3.0 2 units 

3 1.5 7 3.5 2 units 

4 2.0 8 4.0 2 units 

5 2.5 9 4.5 2 units 

In other words, a four-unit change in C always produces a two-unit change 
in E in a linear relation. Additional examples could be presented to show 
that a two-unit increase in C always produces a one-unit increase in E, a six-
unit increase in C produces a three-unit increase in E, and so on. Moreover, 
if we decrease C by two units, E will decrease one unit, which can be 
interpreted by saying that a change of minus two units in C produces a 
change of minus one unit in E. Similarly a change of minus four in C gives 
a change of minus two in E; a change of minus six in C gives a change of 
minus three in E, and so on. 

These examples illustrate the point that an equation that describes a linear 
causal relation between the levels of two flows also describes the relation 
between changes in the flows. To be precise, let ∆ (delta) represent the 
numerical value of a change in levels. Then, from E = C/2, which related 
levels of C and E, we can surmise that 

 

2
CE ∆

∆ = 

Suppose now that we have a flow F that is determined by a flow A and a 
flow B as follows: 
 

34
BAF += 
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Readers may wish to try various numerical values to illustrate that here, 
too, the formula that specifies relations between levels can be translated 
directly to a change formula; that is, 
 

 3/4/ BAF ∆∆∆ +=

The points illustrated in 1.5 can be stated as a general principle. 

I.6 If causal relations between flows are linear in form, the structural equations 
that describe the relations between the values of variables can be translated 
directly to a form that describes relations between changes-in-values. 
Coefficients are the same in both forms but the constant is deleted from the 
change equation. 

This principle is not generally applicable when the relations between flows are 
other than linear. 

If we were given only a change-equation to begin with, we could not 
completely produce the structural equation because we would not know the value 
of the constant. On the other hand, the change-equation does provide information 
concerning the structural equation. The numerical values of all the coefficients 
are the same, and, more generally, if we know that a change in flow A causes a 
change in flow B, it is clear that the structural equation for B should include a 
term for A. This point is used frequently in translating verbal theories that express 
relations among changes into mathematical or graphical formulations that 
concern relations among states (see Chapter 2). 

The translatability between state and change formulations of linear relations is 
especially valuable in verbal discourse because it is generally easier and more 
familiar to talk of changes causing changes rather than of states causing states. 
(Also, of course, the change perspective eliminates the need to be dealing 
continually with adjustment constants.) Once the causal relations of a system 
have been specified in change terms a structural formulation can be set up by 
using the procedures in Chapter 2 to provide a basis for identifying the numerical 
values of the coefficients (Chapter 5). Finally, once numerical values for 
coefficients are available, interpretations can be phrased again in terms of 
changes producing changes. 
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Interpreting Structural Coefficients 

The multiplier coefficient in a linear structural equation like E = a + b·C is a 
quantity of critical importance. Indeed, the later chapters in this book are devoted 
mainly to various kinds of analysis involving such structural coefficients. Their 
significance lies in the way in which they can be interpreted theoretically from 
several different perspectives. 

First, as shown in Chapter 5, it is possible to estimate the value of a structural 
coefficient from empirical observations on variables. If a structural coefficient is 
zero in value, this suggests that no effective operator relates two variables. 
Inferring the absence of causality when a coefficient is zero is the predominant 
way of implementing causal inference principle I.5. 

Second, a structural coefficient provides evidence of the strength of an existing 
causal relation between variables. Suppose, for example, that two different 
operators support the relation C-causes-E and that E = C/4 describes the 
consequences of one, E = C/2, the other. The causal relation supported by the 
second operator is stronger because for a certain change in C it produces a larger 
change in E (e.g., if C changes four units, then E changes two units using the 
second operator but only one unit using the first). The difference in strength here 
is reflected in the structural coefficients: ½ is larger than ¼. In general, if several 
different kinds of operator support the same causal relation, the strongest is 
associated with the largest structural coefficient (disregarding plus and minus 
signs). The strength of a relation is frequently a matter of concern in designing 
systems to accomplish certain objectives. Such information can also be valuable 
in determining how different outcomes can be produced by systems with the 
same pattern of relations but different components. 

Third, the sign of a coefficient reveals whether the corresponding operator 
supports a positive relation between flows (increases causing increases) or a 
negative, inverted relation (increases causing decreases). Such information 
becomes interesting in dealing with interconnected operators in which a change 
introduced into one variable cascades through the network of relationships, 
sometimes causing increases in other variables and sometimes decreases. 
Techniques for tracing the consequences in such cases are provided in Chapter 2. 

Finally, a structural coefficient always relates to some operator. The 
coefficient can be viewed as a highly succinct description of an operator, 
which emphasizes its consequences in relating flows rather than its internal 
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structure and mechanisms. Occasionally it is discovered that operators supporting 
a relation between two flows can be systematically described in terms of some 
property whose magnitude corresponds to the structural coefficient for each; for 
example, rigid bodies are operators that transmute forces F applied to the body 
into accelerations A of the body; the mass of the body M identifies the proper 
coefficient according to an elementary law of physics: A = (1/M)F. Conceivably 
there are comparable laws in social science. 

CAUSAL SYSTEMS 

Especially in the social sciences, few phenomena of interest depend on just a 
single cause and effect. Social science phenomena usually involve many 
different kinds of event, determined by a number of different things, each 
affecting a number of other things. Networks of causal relationships, in which 
many different variables are linked with one another, are called systems. 

The elaboration of causal relationships into systems, or networks of causation, 
makes causality difficult to study. At the same time it is a feature that makes 
causality more fascinating. The difficulties appear because complex data and 
analysis are needed to examine a causal relationship embedded in a network of 
other causal relationships. The added interest comes from the fact that causal 
networks produce a wide diversity of phenomena—oscillation, growth, decay, 
control, and amplification. 

A cliché states that a system is more than the sum of its parts. This is 
misleading to the extent that it implies that a system defies comprehension and 
rational analysis, but it is correct in suggesting that the implications of systems of 
causal relations are far greater than we would suppose, looking at each causal 
relationship in isolation. To capture the complexity of real phenomena causal 
analysis necessarily has to be expanded into system analysis. 

Multiple Causes 

A given effect may be produced by anyone of several causes. Such multiple 
causation introduces complications into analyses, especially when we are 
interested in inferring linear causal relations among variables. The basic problem 
is that an effect can be composed in many different ways when there 
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are multiple causes. Thus it becomes difficult to determine the correspondence 
between an effect and another variable that might be a cause. The problem is 
illustrated in 1.6. 

1.6 

This system consists of six water taps coming off a high-pressure source. 
Each tap is fitted with a faucet of unknown capacity and all the taps flow 
together into a single outlet pipe. The output is measured by a meter reading 
pints-per-minute. Not represented in the figure is a scientist with control 
over faucet A and five monkeys who control faucets B, C, D, E, and F; the 
monkeys have been trained to get food by turning their respective faucets in 
either direction. The scientist at faucet A wants to determine its effect on the 
total outflow. The obvious thing to do is to turn his faucet on to see how 
much it will increase the flow. He does so, but at the same time Monkey B 
turns his faucet down, Monkey C turns his up a bit, Monkey D is sleeping, 
Monkey E lets his faucet run full force, and Monkey F turns his off all the 
way. The net effect is perhaps no change or even a decrease in flow. 
Certainly the scientist's faucet has a causal impact on the total flow. By 
turning on his faucet he has reason enough to expect an increase in flow. 
Yet because of all the other events it does not necessarily happen. The 
effect of a specific cause may be masked by the effects of other causes. 
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Multiple causation complicates causal analysis because it creates a situation in 
which the value of an effect is not determined solely by the cause of focal interest 
but by other causes as well. When trying to study the relation between a specific 
cause and effect, all the other causes act as disturbing factors that confound and 
frustrate analysis. To study the relationship of interest the disturbing factors 
somehow must be controlled. Three different strategies are available. 

One approach, associated mainly with classical experimentation in the physical 
sciences, involves isolation of the relationship of interest. Any disturbance 
depends on a causal relationship, so disturbances occur because of the existence 
of some operator coordinated with some source event. Therefore, if the operator 
for a disturbance can be disconnected, made inoperative, or insulated from its 
stimulus events, this cause-effect relationship no longer exerts its influence. 
Moreover, if the causal relations for all disturbing factors are disrupted, the 
relation between the remaining cause and effect can be analyzed without 
worrying about disturbances. Use of this approach in the example in 1.6 would 
require removing the monkeys, welding their faucets closed, or sealing them off 
from the water source. Employment of this strategy is not always so simple as it 
may seem. It takes considerable skill and knowledge to disrupt every conceivable 
operator or to control all unwanted events. Indeed the strategy may be applicable 
only in problems in which a great deal of scientific knowledge already exists to 
guide experimental design. 

A second method of dealing with the problem of disturbances is to establish a 
kind of passive control over the disturbing factors by observing them in detail to 
determine when one or another is creating an unwanted effect so that it can be 
discounted or otherwise adjusted. In its simplest form this would mean restricting 
analysis to periods in which disturbing factors are not creating disturbances. 
(Applied to the problem in 1.6, this strategy would lead the scientist to test his 
faucet only when all the monkeys were asleep or otherwise distracted.) 

Third, the problem of disturbing factors can be approached from a statistical 
perspective. It is accepted that any single observation is hopelessly confounded 
by disturbing factors, but if enough instances are observed in which the 
presumed source operates at certain levels it should be possible to determine 
whether the source has the proposed effect on the average. In averaging over 
many cases, the effects of the disturbing factors hopefully will cancel one 
another. Applied to the problem in 1.6, this strategy would require the 
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scientist to turn his own faucet on and off 200 or so times and to arrive at an 
average effect on the output. In taking an average, he would allow the chance 
happenings of one trial to cancel the chance happenings of another. 

A key requirement here is that the disturbing factors must be unrelated to the 
causal event of interest. If this were not true—if one disturbing event always 
tended to occur with the causal event of interest—then the effect of that 
disturbance would not disappear with averaging. Furthermore, it is always 
necessary to obtain observations with the presumed cause both present and 
absent, or set at various levels, in order to ascertain whether the presumed source 
makes any difference. 

The statistical averaging idea has been elaborated in two different directions. 
The most rigorous procedure (but frequently impractical in social situations) is 
the statistical experiment in which a lack of coordination between disturbing 
factors and the presumed cause of interest is guaranteed by randomly assigning 
cases for observation into two different sets and then providing the hypothesized 
causal event for just one of them. Then, because the presumed cause is 
uncoordinated with any of the possible disturbing factors, its effect can be 
assessed by finding the average magnitude of the outcome when the presumed 
cause is present and comparing it with the average magnitude when the presumed 
cause is absent. 

In the second approach observations of disturbing factors are used to define 
groups of measurements in which each disturbance has a constant value. Then the 
value of the effect variable in each group is reset arithmetically to the magnitude 
it would have if disturbances had not been present, whereupon the relation of 
interest can be examined to see whether there is correspondence between the 
hypothesized cause and the adjusted effect indicating causality. In actual 
applications the adjustment approach really amounts to studying several causal 
relationships simultaneously. The procedure for adjusting for the impact of a 
second cause while studying a first requires making an adjustment for cause one 
in order to determine how much to adjust for cause two. At first, this sounds 
hopelessly circular and complex. In fact, procedures exist for making this 
separation, given numerous observations on all relevant variables (the principles 
are discussed in Chapters 3 and 5). 

Multiple Effects 

A causal variable may be a determinant of several different effects. One 
important consequence of such patterning is spurious correlation in which 
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the effects tend to change up and down together because of their mutual 
dependence on the single cause. Spurious correlation may be viewed as a 
problem when we want to analyze the correspondence between variables. On the 
other hand, spurious correlations are the base of a systems phenomenon of 
intrinsic interest. 

When a large number of similar effects are dependent on one or a few sources, 
a new higher level variable may be created. The value of the source influences 
the values of all the effects, thereby creating coordination in their magnitudes. 
Then, if the source begins a pattern of repeated change, it sets up a pattern of 
repeated and coordinated effects that may be identified in aggregate as another 
higher level flow. This new flow may serve as an element in causal analyses at 
another level of abstraction or it may be incorporated as a simplifying device into 
the original analysis; for example, the original source can be conceived as 
determining the composite flow while simply ignoring the individual effects. 

Moreover, we may view the elementary effects as dependent on the higher 
level variable, which itself is seen as dependent on the source. This artificial 
conceptualization may suffice in some analyses if most of the elementary effects 
have parallel relations with other variables in the system of interest and if the 
composite value of a large number of elementary effects is almost independent of 
the unique value of anyone of them. Such “causal approximations” are not 
uncommon in scientific and everyday thinking, and the notion often occurs in 
social science. When individual actions have the same causes, the concert of 
action can be identified as a distinct phenomenon, and this phenomenon may 
even “explain” the individual actions, if that is analytically useful. 

Mutual Causation 

Mutual causality exists whenever two variables are related to each other by two 
causal transformations—one in each direction. Such a double relationship is a 
feedback loop. In a feedback loop a change in A causes a change in B, and this 
change in turn is fed back to cause another change in A, which then causes 
another change in B, and so on. Thus the initial change in A causes a whole series 
of further changes in both A and B—an increment for each cycle—and because 
of the additivity principle the changes within each variable cumulate. Loops are 
the essential element in three important systems phenomena (see Chapter 6 on 
the dynamics of loops). 
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Amplification If a change in A causes a similar change in B (e.g., an increase 
causes an increase) and a change in B causes a similar change in A, the 
arrangement amounts to an amplifying system that takes small changes, and 
cumulatively builds them up into larger ones. The relation between sales and 
advertising provides a simple example. An increase in advertising produces more 
sales, more sales lead to more advertising, the extra advertising leads to still more 
sales, and so on. 

Control Suppose that a change in A causes a similar change in B but a change in 
B causes a reverse change in A. Then, if the value of A goes up, B goes up, but 
because B goes up A now goes down. A going down causes B to go down, but 
because B goes down A now goes up. This arrangement is at the core of many 
control mechanisms, including social control. The classic example in engineering 
is a thermostat. When the temperature in a room is too high, the source of heat is 
turned down or shut off; this allows the temperature to go down, and later the 
heat is turned up; this way the temperature in the room stays within a limited 
range—it is controlled. Social control mechanisms may operate in a similar way; 
for example, increases in a particular crime may lead to more vigilant law 
enforcement, which reduces the incidence of the crime, which reduces vigilance, 
so, theoretically the crime rate stays within a limited range. 

Instability If increments of change become larger and larger with each cycle 
through a feedback loop and continue to cumulate on each cycle, ultimately the 
values of the variables may reach levels so extreme that the operators supporting 
the processes will be endangered; for example, a microphone placed near a 
loudspeaker sets up an unstable loop and produces a howl of increasing volume 
that ultimately can ruin the components of the system. The relations between 
population and technology may constitute a social science example (assuming 
that, directly or indirectly, increases in population cause increases in technology 
and higher technology generates larger populations). At least in modern times 
both population and technology are increasing explosively, though we still do not 
seem to be convinced that the supporting social structures are endangered. These 
instances refer to unstable amplification in which changes on a variable continue 
unabatedly in a single direction until breakdown. Control loops also can be 
unstable. In this case the magnitudes of variables oscillate up and down, going to 
greater and greater extremes until disruption of one or both of the causal 
relationships occurs. 
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Not all loops are unstable. Indeed, our concern in later chapters is only with 
systems in which loops are stable. 

SOURCES AND ADDITIONAL READINGS 

Causality is one of the traditional concerns in the philosophy of science, and 
numerous philosophical essays are available on the topic. A recent and influential 
work is Mario Bunge, Causality: The Place of the Causal Principle in Modern 
Science (Cambridge, Mass.; Harvard University Press, 1959). 

Among the writings on the epistemology of science are those that stress the 
essentially objective nature of science; for example, Karl R. Popper, The Logic of 
Scientific Discovery (New York: Harper & Row, 1968; first published 1934), and 
Carl G. Hempel, Fundamentals of Concept Formation in Empirical Science 
(Chicago: University of Chicago Press, 1952). Others stress the relativism and 
basic subjectivity of scientific knowledge such as Thomas S. Kuhn, The 
Structure of Scientific Revolutions (Chicago: University of Chicago Press; 2nd 
ed. enlarged, 1970), Norwood R. Hanson, Patterns of Discovery: An Inquiry into 
the Conceptual Foundations of Science (London: Cambridge University Press, 
1958), and Roger Poole, Towards Deep Subjectivity (New York: Harper & Row, 
1972). Some social scientists have recently shown an aroused interest in 
epistemology and the psychology of knowledge as reflected, for example, in Jean 
Piaget, Psychology and Epistemology: Towards a Theory of Knowledge (New 
York: Viking Press, 1971, translated by Arnold Rosin), Donald T. Campbell, 
“Natural Selection as an Epistemological Model,” Chapter 3 in Raoul Naroll and 
R. Cohen, Eds., A Handbook of Method in Cultural Anthropology (Garden City, 
N.Y.: Doubleday—Natural History Press, 1970), Oswald Werner and Joann 
Fenton, “Method and Theory in Ethnoscience or Ethnoepistemology,” 
Chapter 29 in Naroll and Cohen, ibid., Edward E. Jones et al., Attribution: 
Perceiving the Causes of Behavior (Morristown, N.J.: General Learning Press, 
1972), and Harold H. Kelley, “The Processes of Causal Attribution,” American 
Psychologist, 28 (1973), 107-128. 

Social scientists in particular have been concerned with methodologies for 
causal inference in situations in which classic experimentation is impossible. 
Two seminal works are Hubert M. Blalock, Jr., Causal Inferences in Non-
experimental Research (Chapel Hill, N.C. : University of North Carolina Press, 
1961), and Donald T. Campbell and Julian C. Stanley, Experimental 
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and Quasi-Experimental Designs for Research (Chicago: Rand McNally, 1963). 
The recent growth of a general theory of systems has greatly extended and 

vitalized causal analysis by injecting the notion of operators and emphasizing the 
analysis of networks of causality. Essays that sketch the general domain of 
systems analysis and some of its implications are provided by W. R. Ashby, 
Introduction to Cybernetics (New York: Wiley, 1963), and Ludwig von 
Bertalanffy, General System Theory: Foundations, Development, Applications 
(New York: George Braziller, 1968). A readable introduction to methods is 
available in Van Court Hare, Jr., Systems Analysis: A Diagnostic Approach (New 
York: Harcourt, Brace & World, 1967). Readings of interest to social scientists 
have been collected by Walter Buckley, Ed., Modern Systems Research for the 
Behavioral Scientist: A Sourcebook (Chicago: Aldine, 1968). His book, Sociology 
and Modern Systems Theory (Englewood Cliffs, N.J.: Prentice-Hall, 1967) 
focuses on implications of modern systems analysis for social theory. 

The analysis of flows can be formalized largely within the framework of 
traditional mathematics, as illustrated in the rest of this book. However, a rigorous 
formal logic suitable for the analysis of operator structures has been developed 
only recently by mathematicians in the form of the algebra of categories. 
Categorical algebra provides a means of analyzing the structure of general 
systems: J. A. Goguen, “Mathematical Representation of Hierarchically 
Organized Systems,” pp. 112-128 in E. O. Attinger, Ed., Global Systems 
Dynamics (New York: Wiley, 1970), and I. Băianu, “Organismic Supercategories 
and Qualitative Dynamics of Systems,” Bulletin of Mathematical Biophysics, 33 
(1971), 339-354. It has also been applied more specifically to social structures: 
Francois Lorrain and Harrison White, “Structural Equivalence of Individuals in 
Social Networks,” Journal of Mathematical Sociology, 1 (1971), 49-80. The study 
of categories requires mathematical training, but a helpful introduction for those 
with the required background is Saunders MacLane and G. Birkhoff, Algebra 
(New York: Macmillan, 1967). MacLane’s Categories for the Working 
Mathematician (New York: Springer-Verlag, 1971) provides a more advanced 
treatment. 

Principles for constructing verbal theories have been a recurrent interest 
among social scientists. Some recent treatments of the topic are Arthur L. 
Stinchcombe, Constructing Social Theories (New York: Harcourt, Brace and 
World, 1968), Hubert M. Blalock, Jr., Theory Construction: From Verbal to 
Mathematical Formulations (Englewood Cliffs, N.J.: Prentice-Hall, 1969), 
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Jerald Hage, Techniques and Problems of Theory Construction in Sociology 
(New York: Wiley, 1972), and Abraham Kaplan, The Conduct of Inquiry, (San 
Francisco: Chandler, 1964). An example of theory construction for behavioral 
science within the systems perspective is provided by William T. Powers, 
Behavior: The Control of Perception (Chicago: Aldine, 1973). 

EXERCISES 

1. Suppose that nearly all heroin users in our society had experience with 
marihuana before they took the harder drug. Does it follow that marihuana usage 
causes heroin usage? (Which experience implies the other? Which precedes the 
other?) 
2. A person’s status may be conceived as the rate of privileged acts that that 
person emits or, alternatively, as the rate of deferring acts that the presence of that 
person evokes from others. Who is the status-producing operator in each of these 
conceptions? Illustrate how the different perspectives may lead to different tactics 
for increasing a person’s status. 
3. Intergenerational mobility is frequently studied by examining the education 
and occupational status of a father along with the education and occupational 
status of his son. What causal relations among these four variables can be 
eliminated by using the rules of causal inference? 
4. Empirical studies of intergenerational mobility in modern America have 
indicated that the correspondence between fathers’ occupational statuses and 
sons’ occupational statuses is small for sons with the same amount of education. 
In other words, knowing that a father has a prestigious occupation does not allow 
us to predict much about the status of the son’s occupation in relation to the 
occupations of other sons with the same education. How does this empirical 
information modify the model developed in exercise 3?  
5. How could a nation’s jet-fighter force be viewed as a flow? Is it reasonable to 
suppose that such a flow is linearly related to its sources? Suppose that the force 
is composed of both Swedish and American planes. Indicate some circumstances 
in which the force could be considered homogeneous and some in which it would 
have to be treated as nonhomogeneous. 
6. If unemployment falls to about 5 percent, a government is likely to set policy 
as if there were no unemployment at all—as if the figure actually were zero. If 
unemployment drops below 5 percent, a government may even begin 
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eliminating jobs, acting as if some sort of negative unemployment were present. 
Presumably, this is because 5 percent unemployment is the normative level and 
the norm defines the practical zero point for this variable. What is the difference 
between a normatively defined zero point and a true zero? 
7. Suppose that increasing persons’ incomes makes them more proestablishment 
and increasing their educations makes them more antiestablishment. Suppose also 
that orientation toward the establishment can be measured as a single attitude 
variable with positive and negative values corresponding to pro and anti. 
Describe the probable stances of persons with the following kinds of status 
inconsistency: a high level of education but low income; a weak education 
combined with a lavish income. What is to be expected of a person with 
consistent statuses—that is, income corresponding appropriately to level of 
education? Is there any basic difference in the attitude of a poor illiterate person 
and a wealthy educated person? 
8. During a period of local economic boom Mr. and Mrs. Smith find that their 
material satisfactions and leisure time are far greater than they had ever hoped. 
One consequence is that they stop using contraceptives, try to reproduce, and 
even seek medical help for this purpose. As a result, Mrs. Smith has two births 
the following year. About five years later the Smith’s burgeoning family is one 
contributing factor that forces the city school superintendent to increase the 
number of first-grade teachers. 
  (a)  Show how parallel events are occurring in all the city’s families by using 
multiple chains of arrows like the following. 

 City’s level of 
local 
commerce in 
year one 

. Smith 
surpluses 
in year 2 

→ → 
Smith 
babies 
in year 3 

→ 

City’s 
five-year-
olds in 
year 8 

→ 
City’s 
teachers in 
year 9 

 (b) Use the “causal approximation” with the second and third variables in the 
chain (standards of living and birth rates) to obtain a simplified representation at 
the macrosociological level. What are the advantages and disadvantages of this 
representation? 
9. Describe the intervening processes by which a family’s surpluses, or 
standard of living, might determine reproduction rate. In particular, consider 
what a family with unanticipated economic surpluses might do to increase 
births and what a family might do to suppress births when its living standards 
are less than desired. Assuming that all of these activities do constitute a single 
operator, how is it different from a physical operator like an automobile 
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that responds continuously to increased fuel with increased speed? In what sense 
is it similar? 
10. Consider a biracial community with P persons of one race and R persons of 
another. The P’s inherently control the town’s real estate, commerce, and 
legislative council by which means they are able to suppress the size of R. The 
extent of P-power however, depends directly on the size of P, and consequently 
the suppression of R also depends on the size of P at a given time. Moreover, it 
happens that P’s are frightened by R’s to the extent that the mere presence of an 
R in a neighborhood terrorizes the P’s. Indeed, each R taking up residence in the 
town typically causes several P’s to move out entirely. Thus an increase in R’s 
causes a proportional decrease in P’s. 
 (a) Use arrows (as in exercise 8) to show the causal relations in this system. 
Use letters c and d to label the two arrows. 

(b) Think of c and d as the structural coefficients for the two relations. What 
are the signs of these numbers? Do the two relations together constitute a control 
system? 

(c) Suppose that the absolute values of c and d are greater than 1.0 and that a 
sudden migration produces a substantial increase in R. What will the ultimate 
consequence of the R migration be on the town’s composition? 



 

2 CAUSAL DIAGRAMS 
AND FLOWGRAPH 
ANALYSIS 

Verbal statements of social theory have the advantage of being widely 
comprehensible. They have the disadvantage of being unwieldy for logical 
manipulations. Thus at some point it is desirable to develop mathematized 
formulations that will facilitate deduction of the nonintuitive implications of a 
theory. In addition, mathematical formulations are typically useful in confronting 
a theory with adequate reality tests using statistical procedures. 

Social theorists are often more talented with words than with mathematics, and 
for such persons formulas may connote meaninglessness rather than a gain in 
logical power. In the hope of minimizing this kind of alienation from 
mathematics, the emphasis here is on constructing theoretical models based on a 
special kind of mathematical formulation—the flowgraph—which represents 
equations in iconic form. By following a few interpretive rules it is possible to 
obtain mathematical derivations merely by inspecting and redrawing such 
diagrams. Flowgraphs also provide a bridge between verbal theories and more 
abstract representations of theories in terms of equations. 

DIAGRAMMING CAUSAL RELATIONSHIPS 

The construction of a flowgraph to represent a theoretical model begins with the 
assignment of symbols to the variables to be considered. 

II.1 Each variable is represented in a diagram by a brief acronym or symbol. 

If socioeconomic status were a salient theoretical variable in the system being 
examined, the diagram could be started with the label SES, or perhaps just X. 
Brief labels have no mathematical significance. It is just that longer labels tend to 
obscure the graphic configuration as the diagram grows larger. 

38 
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Conventionally, the letters V, W, X, Y, and Z (capitalized) are reserved for 
labeling variables. Sometimes the same letter is used repeatedly, distinguished by 
the use of subscripts (e.g., X1, X2). Subscripts may be avoided in small systems 
because they make things appear to be more technical than they really are, but 
when dealing with relations among many variables the use of subscripts actually 
simplifies notation. 

When using abstract symbols, such as X, Y, and Z, it is desirable to reserve a 
part of the diagram as a glossary to show what each symbol signifies and to make 
the diagram interpretable without additional references. 

The actual process of constructing a flowgraph involves focusing on one 
variable at a time and examining its causal relations with each of the other 
variables in the system. The diagramming process, outlined in the next steps, is 
applied only to direct causal relationships. A causal relationship is direct if a 
change in one variable leads to a change in another without necessarily changing 
a specified third in between; for example, if a theory states that X has an impact 
on Z, but only by first affecting variable Y, then the relation between X and Z is 
indirect, though direct causation from X to Y and Y to Z is indicated. 

II.2 A solid (preferably straight) line between the symbols for two variables 
indicates a direct causal connection. An arrowhead, pointing toward the 
influenced variable shows the direction of causality. 

2.1 X → Y means “X causes Y” 

Generally it is desirable to show the cause on the left, or above, and the effect on 
the right, or below. This convention has no mathematical basis and it is not 
necessary to follow it rigidly. It does, however, assist in the orderly construction 
of a diagram and it enhances interpretability by positioning the system inputs 
toward the left or top of the diagram and the system outcomes toward the bottom 
or right. 

II.3 Each causal path is labeled with a unique identifying symbol. 

The path symbol carries two interpretations. First, it provides explicit 
recognition that an operator is needed to establish the particular cause-effect 
relationship and provides a means of specifying this operator in discussion. 
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Second, the symbol stands for the quantitative specifications of the operator—
how it transforms change in one variable into change in another. As a 
quantitative specification the symbol could stand for a specification sheet (like 
that included with a high fidelity amplifier), a complex formula, or a single 
number. In merely diagramming a theory, no restriction exists on the complexity 
of the specification. In this text, however, we deal only with linear 
transformations that can be specified by a single number, in which case the path 
symbol represents the structural coefficient for that particular causal relationship. 

As in labeling variables, there are conventions in symbolizing structural 
coefficients. Standard symbols are a, c, d, e, f, g, p, and q (b is reserved for other 
purposes). In systems that have many relationships the use of distinct letters 
becomes infeasible, and subscripts must be added. A subscripted structural 
coefficient always receives two subscripts: the first is the symbol for the 
dependent or outcome variable in the relationship and the second is the symbol 
for the independent or source variable; for example, if X causes Y and the letter a 
is the symbol for the structural coefficient, it is subscripted aYX. When the 
variables themselves are subscripted, only their subscripts define the structural 
coefficient; for example, if X1 causes X2 and the coefficient is symbolized d, then 
it is subscripted d21. 

2.2 means X causes Y and a signifies the kind of operation that 
transforms change in X into change in Y. In this book it is 
assumed that the transformation is linear, in which case a 
is also the structural coefficient that describes the linear 
transformation. 

means the same as above, but here the structural coefficient 
 is subscripted to identify it more specifically. 

means Zi causes Z2; once again a21 is the structural coefficient 
that describes how values of Zl transform into values of 
Z2. 

When the numerical value of a structural coefficient is unknown but its sign 
is known, the available information can be shown in the diagram glossary; 
for example, if a theory specifies a positive relation (increases in X cause 
increases in Y), the glossary would contain an entry like aYX(+). If 
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the theory specifies a negative relation, such as increases in Y produce decreases 
in Z, the entry would be aZY(–). When the full quantitative value of a coefficient 
is known (e.g., aYX = .53), we ordinarily enter this number directly on the 
appropriate flowgraph arrow instead of using a symbol. 

COMPLEXITIES IN DIAGRAMS 

The graphical representation of a system is built up piecemeal by taking the 
variables two at a time and applying the above principles over and over again, 
adding more variables and more arrows to the diagram, until all necessary 
aspects of the theoretical model have been considered. A flowgraph built up in 
this simplified fashion in the end represents the system as a whole. However, 
some possible points of confusion may develop as a flowgraph is constructed. 

Branches 

A system would be uninteresting if it consisted only of relations among separate 
pairs of variables with no relations connecting different pairs. Hence, in practice, 
some variables will be related not just to one other variable but to several others, 
and so a number of arrows must impinge on the same variable and/or branch 
from it. When several different arrows enter a variable, it means that the 
dependent variable has multiple causes. When several arrows emanate from the 
same variable, it means that the variable is a source with multiple consequences. 

The drafting problem becomes more difficult when multiple causes and effects 
must be represented; for example, if X has two dependent variables, Y and Z, how 
should they be diagrammed? By convention, both should be to the right or below 
X, but should Y be above and to the left of Z or vice versa? It is typically not 
possible to decide until all the relations of Y and of Z have been examined; for 
instance, it may be found later that Z has a causal impact on Y, and, in this case, Z 
would be plotted above or to the left of Y, as shown in 2.3. 

2.3 
means X directly causes both Z and Y; in addition, Z 
directly causes Y. 
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We rarely are able to position all points conventionally and minimize curved 
lines and crossing arrows in a first drawing. Yet, because so much that comes 
later depends on visual inspection of the diagram, it is imperative to keep the 
diagram as transparent as possible. This usually means redrawing the diagram 
once or twice and positioning points so that the arrows seem to flow mainly from 
one side to another and crisscrossing and curved lines are absent or at least 
minimal. 

Loops 

A causal loop exists whenever some variable is not just passively dependent on 
its causes, but, in turn, it influences one or more of its own determinants. If a pair 
of variables forms a loop, the variables are connected by two arrows pointing in 
opposite directions, each labeled with a different symbol. Causal loops defy 
diagramming in the conventional up-down, left-right fashion. No matter what 
adjustments are made, an arrow points in an upward or a leftward direction. 

Sometimes feedback loops are indirect and may not even be explicitly cited in 
a verbal theory, though they are implicit in the statement of other relations. The 
first inkling of a loop may appear when the arrows in a completed diagram 
display the unconventional directionality. The third example in 2.4 illustrates the 
kind of situation in which this could occur. 

2.4   EXAMPLES OF FEEDBACK LOOPS 

means that X causes Y and Y causes X 

An indirect feedback loop. Y is dependent on X, Z is dependent on Y, and X 
is dependent on Z. 
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An indirect loop that might go unnoticed in verbal theory becomes evident 
when the diagram is drawn. 

Self-Loops 

A variable may be involved in a feedback loop even though additional variables 
in the loop are unspecified. The diagramming convention is a circular arrow that 
leaves and enters the same variable. The direction of the arrow is immaterial. 

2.5   Self-loop. The three representations are equivalent. 

or or 

The symbol a stands for the operation or set of operations that converts an initial 
change in X into an additional subsequent change in X. 

Missing Arrows 

The fact that mutual causality between two variables is represented by a pair of 
arrows, whereas one-way causation is represented by a single arrow, highlights 
an important feature of flowgraphs. The absence of an arrow conveys a definite 
piece of information: one conceivable causal effect is not present in the system; 
for example, the lack of an arrow from variable Y to variable X in a diagram 
indicates that Y has no direct causal effect on X, and a change in Y either 
has no impact at all on X or at most an indirect effect moderated by changes 
in other specified variables. Absence of causal operators, a 
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crucial feature of a system, gives it structure and character. As much 
consideration should be concentrated on the idea of not drawing an arrow 
between two variables as on the idea of drawing one. 

A diagram with fewer arrows is generally more interesting than one with 
causal links connecting nearly everything in both directions. The sparer 
theoretical structure has the edge in parsimony, and it is usually easier to evaluate 
a parsimonious theory with empirical research. Indeed, a structure in which all 
variables are linked in both directions provides little basis for deriving any tests 
at all. Nevertheless, simplicity gained by assuming that causal effects are absent 
when they really may be present has worse repercussions. An oversimplified 
theoretical structure can lead to false inferences and erroneous interpretations of 
research findings. Hence the following rule: 

II.4   An arrow should be included rather than left out whenever there is reason 
to doubt the absence of a causal effect. 

Any flowgraph, including a diagrammatic translation of an existing verbal theory, 
cannot be considered really complete until the plausibility of each missing arrow 
has been studied. A conceivable arrow between two variables should be left out 
only when a definite plausible argument can be made to justify the assumption of 
no effect. Such arguments depend on the principles of causal inference stated in 
Chapter 1. 

The systematic consideration of every missing relationship can easily become 
confusing in large systems. It may help to make up a relational table with all 
variables listed in rows and columns. The cells of the table represent all possible 
causal. relations in the system, and working with the individual cells provides a 
systematic routine that guarantees separate consideration of every possible pair 
relation. 

Disturbances 

Most social theories are qualified with phrases like “generally,” “usually,” 
“on the average,” “other things equal,” and “partial explanation.” The reason 
is that a natural social system rarely operates in isolation. Social systems 
operate within the environment of other systems, and the various systems 
barrage one another with disturbances. These disturbances typically have no 
overall pattern. Sometimes they force a variable to change in one 
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direction, sometimes in another; sometimes they effect a large change, 
sometimes a small one. In diagramming, the disturbances are considered in terms 
of their net effect on the variable of interest; that is, they are treated in aggregate 
as if they were a single outside source variable with an unknown value. 

II.5  Disturbances in a variable are represented by a distinct symbol near the 
affected variable, with an arrow leading from the disturbance symbol to the 
variable symbol. 

2.6   DIAGRAMMING EXTERNAL DISTURBANCES 

means that X influences Y but Y also is determined by other 
unspecified factors, represented jointly as UY. 

Most social system variables are subject to disturbances. Disturbance terms, 
however, are not provided for the system inputs because the values of these 
variables are affected by nothing within the system. They are entirely a function 
of outside forces, and it would be redundant to represent an outside source for 
them in the diagram. 

Disturbance terms ordinarily are symbolized by a subscripted U. The 
subscript refers to the variable affected by the particular disturbance, as in the 
example in 2.6, in which the disturbance term for variable Y is symbolized by UY. 

Two alternative conventions are available for labeling the arrow from the 
disturbance to the dependent variable. On the one hand, the hypothetical 
disturbance factor can be viewed as having intrinsic characteristics of its own—a 
value measurable on some special scale. Then it is comparable to other source 
variables in the system, and the arrow must be labeled to indicate how change in 
the disturbance “variable” is transformed to change in the dependent variable. 
The arrow is labeled with a letter, such as a, c, p, q, subscripted first with the 
symbol for the dependent variable and second with the letter U to indicate that a 
disturbance factor is involved; for example, the arrow from U to Y could be 
labeled aYU. 

Alternatively, a disturbance factor can be defined on the same scale as the 
variable it affects, in which case a change in the disturbance “variable” is 
always the same as its effect on the dependent variable. If all sources of 
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disturbance cause a dependent variable to change by one unit, the change in the 
hypothetical disturbance term is presumed to have been one unit. Here it is not 
necessary to label the disturbance arrow at all because it always represents the 
same transformation: the dependent variable is changed by the same amount as 
the disturbance. This is an identity transformation involving a structural 
coefficient of 1.0, and by convention the lack of a label on an arrow signifies it. 
Because it eliminates extra symbols, this second convention is employed here 
until some positive gains are to be achieved with the alternate convention. 

Although disturbances probably affect almost all social variables, symbols for 
disturbances are not included in all flowgraphs in this book. The deletions are for 
the sake of simplicity in analyses and discussions. When, however, the presence 
of disturbances influences general conclusions, the disturbances are represented 
explicitly on the relevant diagram. 

Nonlinear Relations 

The assumption of linear relations was implicit in the procedures described for 
diagramming. In particular, it has been assumed that the operation signified by an 
arrow in no way depends on the value of the source variable or any other variable 
in the system. Examples can be given in which this is not the case: entertainment 
expenditure may be determined as a constant proportion of income but only after 
income has passed a certain point so that basic subsistence needs are covered. 

A special diagramming convention is available to signal a situation in 
which a transformation takes effect only above a certain value of the source 
variable. The usual arrow is drawn and labeled with the symbol for the 
transformation; but to indicate the limitation the arrow is crossed with a short 
perpendicular, which in turn is labeled to show at what value of the source 
variable the causal operation takes effect; for instance, the diagram 
 

2.7   Example of a limiter.  
 

    in 2.7 is read as follows: X determines Y via the transformation a. However, the 
transformation takes effect only when X has a value of 5 or more. By convention, 
it is understood that if X is less than 5 changes in X have no effect on Y. 
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Complex patterns of transformation can be represented by using combinations 
of limiters. The possibilities are not explored here but they are covered in 
references listed at the end of this chapter. 

Limiters in a diagram indicate nonlinearity and preclude the use of the simple 
and elegant methods of graph analysis discussed in this book. A single limiter, 
however, can be eliminated easily by elaborating a diagram into two others—one 
applicable below the limit value, the other above it, as illustrated in 2.8. 

2.8 

can be represented alternatively by two diagrams: 

for X < 3 and for X ≥ 3 

Sometimes the form of a relation between two variables depends on the value 
of some other variable in the system; for example, both income and education 
probably are determinants of the consumption of “high culture” (books, classical 
records, theater attendance, and so on); but the strength of this relation probably 
increases with the level of education. Thus income and education interact in their 
determination of high-culture consumption. 

Another diagramming convention is available to represent such interactions. 
Arrows from the interacting variables are drawn to terminate at a circle that is 
labeled externally with the symbol for the dependent variable and internally with 
a symbol (usually f or g) that stands for the special transformation for converting 
values of the source variables into a value for the dependent variable. 

2.9   An example showing graphical representation of an interaction. 

where f stands for the expression Z = X ·Y. 
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Interactions are closely related to limiters, and interactions, like limiters, preclude 
straightforward flowgraph analyses. Sometimes, as with limiters, a diagram can 
be elaborated into several restricted diagrams in which the interaction effect is 
eliminated or minimized; for example, the diagram in 2.9 could be elaborated 
into two different ones to correspond to, say, high and low values of Y. 
Alternatively, it may be possible to treat one of the variables as a parameter that 
must be set for each entity before analysis. The example in 2.9 is represented this 
way in 2.10. 

2.10    An alternative method of diagramming the multiplicative interaction 
 in 2.9. 

Sometimes interactions can be eliminated from a diagram by changing the scales
on which variables are measured. The relation in 2.9 would become conventional
if X, Y, and Z were measured in terms of the logarithms of their original scale
values because multiplicative relations become additive in logarithmic
transformation. Other more general techniques for dealing with interactions in
flowgraphs require a higher level of mathematics than we use in this book, and
the interested reader must consult the chapter references. 

FLOWGRAPH ANALYSIS 

Linear flowgraphs can be “read” to define the net effect from one variable to 
another even when the variables are connected indirectly and complex 
connections involve multiple chains of causation and intervening feedback loops. 
These analyses allow us to trace the reverberations of inputs; they indicate the 
kinds of diversity that will exist among cases affected by the system; they suggest 
how system variables will be correlated in empirical data and give a basis for 
further causal inference; and they provide insights into how a system would have 
to be modified to change its outcomes. 

The principles outlined in this chapter apply only to linear systems of 
certain kinds. First, the rules apply to systems in which the causal relationships 
are stationary over time. A change in X leads to the expectation of a 
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certain amount of change in Y, no matter when the X change occurs. Second, the 
focus in this chapter is on the terminal effects of an input change, not on the 
intermediate dynamics by which variables reach their final state. On the one 
hand, this means that concern is limited to stable systems that achieve steady 
states, excluding those whose very nature leads to endless oscillations or infinite 
growth. On the other hand, the assumption requires that the values of all 
variables have stabilized at unchanging or static values at the time of 
observation. (System dynamics is taken up briefly in Chapter 6.) 

In addition, it might be emphasized that the restriction to linear relations 
implicitly requires measurements of variables on interval scales so that the 
additivity and proportionality principles hold. Actually what is required is a 
reasonable approximation to interval measurement, not perfection; for example, a 
mass-produced ruler is not a perfect interval scale, but it is an adequate 
approximation for the study of many everyday objects. Measurement technology 
in the social sciences is sufficiently advanced to provide reasonable 
approximations to interval measurement for the analysis of many causal systems. 

Equation Formation 

A flowgraph, in conjunction with a few rules, allows us to express the values of
a dependent variable in terms of the values of its source variables. 

II.6   The value of a variable determined by only a single source is the value of 
the source times the structural coefficient. 

2.11 implies  Y  =  a ·X 

The equation in 2.11 may seem incomplete because even simple equations 
usually contain some constant correction factor; for example, Y = a ·X + 5. Here 
constants are not written as part of the expressions derived from a flowgraph, 
which means implicitly that every variable has to be measured on a scale 
adjusted so that the constants do not appear. 

If desired, correction constants could be retained in graph analysis by 
modifying the diagrams slightly as shown in 2.12 (writing the equation requires 
the application of rule II.7). 
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2.12 

implies Y  =  a ·X + 5 

A constant should not be confused with a disturbance term. The constant is a 
special kind of source that remains the same, no matter what, whereas a 
disturbance is a special kind of source that symbolizes variable forces impinging 
from outside. 

Obviously the inclusion of a constant complicates diagrams, and it is easy to 
show that this is unnecessary when dealing with linear systems. Taking the 
example in 2.12, we create a new measurement Y’ by subtracting 5 from every 
original measurement of Y; that is, 

Y’  =  Y - 5 
which means that 

Y  =  Y’ + 5 

Now, substituting this into the equation in 2.12 gives 

Y’ + 5  =  a ·X  + 5 
or 

Y’  =  a ·X 

So a slightly revised way of measuring Y produces an equation without the
constant, and this simpler equation has a simpler graph, like that in 2.11. 

II.7   The value of a variable determined by two or more sources is the sum of the
source values, each multiplied by its respective structural coefficient. The order
of the summation does not matter. 

2.13 

Z = c ·Y + a ·X 
implies         or 

Z = a ·X + c ·Y 

The summation rule applies no matter how many sources. However, it 
applies only to direct sources; for example, in 2.13 variables that indirectly 
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affect Z by, say, influencing Y first are not entered into the summation. Such 
indirect effects are analyzed by the rules that follow. 

Because most social science diagrams include a disturbance term as one of the 
sources for any dependent variable, it is worth considering an example to 
determine how the summation rule applies. 

2.14 Y  =  a ·X + 1 ·UY  =  a ·X+ UY 
implies or 

Y  =  UY + a ·X 

Thus the summation rule applies to a disturbance term just like any other source. 
Moreover, as indicated in 2.12, the summation rule would apply if one of the 
sources were a constant. 

Structural-Equation Representations 

The preceding rules allow us to write out the structural equations of a theory; that 
is, these rules define how verbal statements of theory are converted to a 
flowgraph formulation and how the flowgraph defines mathematical equations. 
Structural-equation formulations are particularly important in more advanced 
treatments of complex systems. 

The structural equation for each dependent variable in a system is obtained 
with rule II.7, once the flowgraph has been drawn. Paths branching away from a 
variable are ignored in writing the equation for that variable, but every incoming 
arrow signals a term that must be included. A variable in a feedback loop is 
treated like any other variable: its equation includes a term for each of its 
immediate sources, whether or not the source is another loop variable. Because 
most dependent variables are affected by disturbances, most equations also 
include a disturbance term. 

In order to examine a moderately elaborate example of the procedure, consider 
the system represented in the first flowgraph in 2.43 (ahead). There are three 
dependent variables—that is, three variables with arrows coming into them. Thus 
the mathematical formulation has three equations: 

X  =  a ·W  +  e ·Y  +  c ·Z  +  U X  
Y  =  d ·Z + U Y 
Z  =  f ·X + U Z 
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This set of simultaneous equations is the static structural-equation model of the 
system represented in the flowgraph. 

In more advanced literature dependent variables (X, Y, Z in the preceding 
example) frequently are called endogenous variables. The variables whose values 
are set by forces outside the system (only W in this example) are called 
exogenous variables. This book uses the term inputs instead of “exogenous 
variables.” 

Reduction Rules 

II.8   When one variable determines a second and the second determines a third, 
the value of the third variable can be expressed as the value of the first variable 
times the product of the structural coefficients along the chain. The same 
principle applies when the chain has more than two links. 

2.15 implies  Z  =  a · c · X 

This “chain rule” defines indirect effects of a source by eliminating consideration 
of the variables that intervene between the source and an outcome of interest. 

The expression obtained from applying the chain rule in 2.15 could be re-
written as  Z  =  (a · c) · X  and this expression would correspond to the diagram 
X     Z. In fact, as far as the variables X and Z are concerned, this new diagram 
would be completely equivalent to the original, and the chain rule defines a 
means for reducing a graph to a simpler form: 

2.16 reduces to 

This principle also holds no matter how many links there are in the chain. 

II.9   To express the value of a dependent variable in terms of multiple direct and
indirect sources the separate effects along each chain are obtained first by rule
II.6 or rule II.8. The summation of all effects is then obtained by rule II.7. 

2.17 

reduces to and implies 
 Z =  a ·W + c · d ·X 

a·c → 
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A special case of major importance occurs when several indirect sources operate 
through the same intervening variable. The chain from each source is defined in 
isolation, as if the other sources were absent.  

 

2.18 

reduces to and implies 
 Z = a·d·W + c·d·X 

The rule also applies when there are several outcome variables rather than just 
one. We simply apply the rule repeatedly to obtain a different expression for each 
outcome. 

2.19 

reduces to and implies 
 Y = a·c·T + e·c·W 
 and 
 Z = a·d·T + e·d·W 

Another case of special interest develops when an intervening variable in a 
chain is affected by disturbances. The disturbance term is treated as another 
source and rule II.9 is applied. 

2.20 

reduces to and implies 
 Z = a·c·X  + c·UY 

It constitutes only a minor elaboration to include a disturbance term for Z as well. 

2.21 

reduces to and implies 
 Z = a·c·X 
 + c·UY + UZ 
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II.10   If a source and a dependent variable are linked by multiple paths, the total 
effect between the two is the sum of the effects along each separate path. The 
path effects are obtained by rules II.6 and II.8. The order of summation does not 
matter. 

 2.22 

reduces to or 

and implies Z = a·c·X  + d·X  or  Z =  (a·c + d)X 

2.23 

reduces to or 

and implies  Z  =  a·e W  + c·d·W  or  Z = (a·e + c·d)W 

A question may be asked about the procedure when the intervening variables 
have additional sources. We first partition the effects due to different sources, 
using rule II.9, then apply rule II.10. 

2.24 

by rule II.9 reduces to 

by rule II.10 reduces to 
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The expression defining the value of Z could now be obtained by using rule II.7. 

Additional Interpretations of the Rules 

Some of the rules stated above have more interesting implications than may be 
evident at first glance; for example, the chain rule (II.8) implies that if all the 
coefficients along a chain have positive signs an increase in the source will lead 
to an increase in the final variable and a decrease in the source will lead to a 
decrease in the final variable. On the other hand, a single negative sign anywhere 
along the chain will cause the directionality of change to be reversed from source 
to outcome. In general, if there are no negative coefficients or an even number of 
negative coefficients along a path, changes in the source will lead to changes in 
the dependent variable without reversal. If an odd number of negative coefficients 
occurs along a path, changes in the source will lead to changes in the final 
dependent variable with reversal of direction. 

The absolute numerical values of structural coefficients in social systems are 
often fractions (i.e., their absolute values are less than one and greater than zero), 
when all variables are measured on comparable scales. Fractions multiplied 
together produce more fractions with still smaller values than the original terms. 
Thus a chain effect tends to be less in magnitude than any of the direct effects 
along the chain. The longer the chain, the smaller the net effect because the 
product of fractions becomes smaller as more of them are multiplied. This 
implies that long chains of causation may be of little practical significance in 
analyzing social systems, and theories that account for some end effect in terms 
of a long sequence of preceding linkages may be explaining only a minute 
portion of the total variations in an outcome. 

Rule II.10 shows that effects from one variable to another cumulate over all 
the paths that connect the two variables. A situation of special interest is one in 
which one of the multiple paths is direct and involves a single arrow from the 
source to the dependent variable; the other paths (or path) are indirect and involve 
chains through several other variables in the system, in which case the source has 
an immediate effect through the direct path and an indirect effect through the 
other paths. The magnitudes of these two kinds of effect could be compared. If 
we were to manipulate the source to achieve a particular effect in the dependent 
variable, we would have to allow for the indirect as well as the direct effects. 
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Flowgraphs with Loops 

II.11   A chain of arrows that leaves, and ultimately returns, to the same variable 
is a “loop,” provided that no reversals of direction occur along the path and that 
the path impinges on no variable more than once, except for the variable used as 
a starting point, which is impinged on just twice. 

Some typical examples of loops are given in 2.25. Note that a source variable, 
not involved in the loop, is always represented. A source is necessary to enter the 
loop subsystem, and a loop without at least one source would be unrealistic. Note 
also that loops may be “hidden” in the context of a larger diagram, as illustrated 
in the lower half of 2.25. 

2.25 

Self-loop Mutual-effects 
 loop 

Indirect feedback loops 

Graph with one loop (W X Y) 

The convention used here to identify loops is to simply list sequentially the 
variables through which the loop passes. The starting variable is not listed twice, 
though it should be understood that it also is the end variable. These 
identifications are not unique because any variable along the loop may be used as 
a starting point. Thus in the lower example in 2.25 any of the following 
identifiers refer to the loop: (W X Y), (X Y W), (Y W X). 
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The convention of drawing arrows downward or to the right helps to find 
loops; for example, notice how arrow e signals the loop in the lower figure of 
2.25. It is sometimes inconvenient, however, to follow the convention rigidly in 
drawing diagrams; arrows pointing in the “wrong” direction at best serve as 
clues. 

The chain (V W X) in 2.25 is not a loop because arrow g reverses the direction 
of the path. Notice also that a chain like (W X Y W) should not be viewed as a 
loop because the path impinges more than once on W, and, presuming that it ends 
at X, this chain therefore would touch two variables twice. 

Many systems contain multiple loops: 

2.26 System with three loops: (X Y), (X Y Z), (Z) 

This system illustrates a nest of loops—that is, multiple loops whose paths partly 
overlap. A loop in a nest should be identified as separate if there is so much as a 
single arrow distinguishing that loop from others; 2.27 is another example of 
mu]tiple loops: 

2.27   System with two loops: (W X Y Z), (W Y Z) 

In this example there are two loops but there is only one wrong-direction arrow. 
This again emphasizes that the directionality principle is only an aid to finding 
loops. In particular, the “wrong-direction” principle may fail to signal the 
existence of a nest of loops that uses the same return path. 
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Loops that are merely adjacent do not create nests: 

2.28   System with two loops: (X Y), (Y Z) 

The path (X Y Z Y) is not a loop because it impinges twice on the intervening 
variable Y. 

Finding all distinct loops is a crucial step in analyzing systems with feedback 
and, because there is no simple routine guaranteeing loop discovery, the ability 
has to be cultivated as a skill. 

II.12 The “return effect” of a loop, symbolized L, is equal to the product of the 
coefficients along the loop chain. 

The diagrams in the top half of 2.25 are reproduced in 2.29 to provide some 
examples. The sets of symbols that have served as loop identifiers are now used 
as subscripts to identify a particular return effect: 

2.29 

LY = c LYZ = c·d LXYZ = c·d·e 

LWXYZ = c·d·e·f 

The choice of starting point does not matter; for example, in the third diagram, 
LXYZ = c·d·e  = LZXY = e·c·d. 
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The following graph offers a more complex example: 

2.30 
LWXYZ = c·e·f·g 
 LWYZ = d·f·g 

The return effect has a meaningful interpretation. It indicates how much a 
variable in a loop will change after just one cycle around the loop, following an 
initial one-unit change. Consider, for example, the case in 2.31. 

2.31 

LYZ  =  (.5)(.6)  =  .3 

Assume that X is manipulated to create an initial change of one unit in Y. This 
causes a change of .5 units in Z. The change in Z causes another change in Y: 
(.5)·(.6) = .3 units. So after one cycle Y is incremented by the value of the return 
effect. Of course, this .3 unit change would move around the loop, causing still 
another increment in Y (.09 units), and it in turn would move around the loop, 
and so on, but the return effect—the increment occurring one cycle after an 
initial one-unit change—is a most important quantity. It is sufficient information 
to calculate the net effect of all the cycles following the initial change (using rule 
II.16 ahead). 

II.13  A chain of arrows is an “open path,” provided that no reversals of 
direction occur along the path and that the path impinges on no variable more 
than once. 

A simple example of an open path is provided in 2.16. 
Open paths contrast with loops, which are “closed paths” with no real 

beginning or end. (Choosing a loop “starting point” is arbitrary and only a 
convention for identifying the loop; any variable on a loop serves equally well as 
a starting point.) 
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The notation that identifies open paths is similar to that used for loop 
identification; for example, (X Y Z) refers to an open path starting at X, moving to 
Y, and terminating at Z. Of course, the chain does not return to the starting point 
in an open path. Also, the sequence of symbols is unique; (X Y Z) is not the same 
as (Y Z X). Loop identifiers and open path identifiers are always employed as 
subscripts on different symbols and in practice there is little chance of confusing 
the two. 

Open paths are basically familiar, inasmuch as rules II.6—II.10 deal 
exclusively with them; for example, the diagram in 2.22 shows two open paths 
between X and Z: (X Z) and (X Y Z). They are of more general interest, however, 
because they can be identified across loops or within loops, as shown in 2.32. 

2.32    This system has one open path between W and Z: (W X Y Z). There are 
 two open paths between Y and Z: (Y Z) and (Z X Y). 

A pair of variables may be linked by no open paths at all (e.g., X and V in 2.32), 
by just one open path (e.g., W and Z), or by several open paths (e.g., Y and Z). 
The open paths connecting Y and Z in 2.32 are opposite in directionality; this is 
characteristic of open paths that connect variables in the same loop. 

II.14   An “open path effect,” symbolized E, is equal to the product of the 
coefficients along an open path chain. 

Some examples of open path effects are given in 2.33. The sets of symbols used 
to identify open paths serve as subscripts to identify the open path effects. 

2.33 EWXYZ = a·c·d 

 

EWXZ = a·e 

EWYZ = c·d 
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EWXYZ = a·c·d 

EWXYZ = a·c·d; EXYZ = c·d; 
 EYZX = d·e; EZXY = e·c 

The expressions for only a few selected open path effects are given in the first 
three examples; all open path effects are indicated in the last example. 

Touching Paths 

II.15   Two loops “touch” if their identifiers contain one or more symbols in 
common.  A loop “touches” an open path if any symbol in the open path 
identifier except the first also appears in the loop identifier. 

The identifiers of loops and open paths are the lists of variables traversed by their 
paths; for example, in 2.32 (W X Y Z) is the identifier for the open path from W to 
Z and (X Y Z) is the identifier for the loop. The two paths touch because their 
identifiers share three symbols. Alternatively, it may be noted that EWXYZ is the 
open path effect and LXYZ is the loop’s return effect. These two effects have three 
subscripts in common, so by rule II.15 they are associated with touching paths. 

Another important example is offered in 2.34. The open path (W Z) is touched 
by neither of the loops in the system—(W X) and (X Y)—because no symbol in 
the open path identifier except the first appears in the identifiers of the loops. 

2.34 Loop (W X) touches open path (V W Z) but not 
open path (W Z). Loops (W X) and (X Y) touch. 

EWX = a; EXY = c; EYZ = d; 
 EZX = e; EWXY = a·c 
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The “touching” concept allows us to define relevant feedback as follows: 
Suppose a variable X is an input for a variable Y because X directly or 

indirectly causes Y but Y does not affect X either directly or indirectly. Clearly, 
there must be one or more open paths from X to Y. If loops are also in the system, 
the relevant feedback for the X--Y relation is the set of all loops touching any one 
of the open paths from X to Y, plus the additional loops touching any of the loops 
in the first set, plus any loops touching those in the second set, and so on. 

As an illustration, consider again the system in 2.34. Variable W is a legitimate 
input for Z, but neither of the system’s loops provides relevant feedback for this 
relation because neither “touches” the open path (W Z). V, however, is also a 
legitimate input for Z, and in this case both loops provide relevant feedback—
loop (W X) because it touches the open path (V W Z) and loop (X Y) because it 
touches loop (W X). 

Reduction with Loops 

The basic principles of analyzing the graph of a system with loops were
presented for engineering applications by Samuel Mason in 1951. The key rule is
the following: 

II.16   The total effect T from an input variable to any dependent variable can be 
determined as follows: E, E’, E”, ..., are the distinct open path effects from the 
input to the dependent variable; L, L “ L”, ..., are the return effects for all distinct 
loops providing relevant feedback; then 

where * is a special operation in which the multiplications in the numerator and
in the denominator are carried out before division, terms are deleted if they
multiply the effects of touching paths, and division is carried out only after such
terms have been deleted. 

A simple illustration is given in 2.35. 

2.35    Find the total effect from X  to Z in the following diagram: 
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There is only one open path effect between X and Z: EXYZ = a·c; there is 
only one loop, with return effect LY = d. Thus 

The open path from X to Z and the loop at Y are touching; hence the []* 
operation requires deletion of the term (EXYZ·LY) from the expression to 
give 

 

The simplest loop system possible is shown in 2.35. Some of the principles 
involved in rule II.16 can be illustrated best in this case. Suppose that variable X 
is manipulated so that Y goes from a value of zero to exactly 1.0 immediately 
after the change in X. Assuming that X is held at its new value (as we always do 
in static analyses), Y will be held at its value of 1.0. However, the original change 
in Y now passes on through the self-loop. It is multiplied by the return effect of 
the loop LY and this increment in turn is added to Y. Because Y is already being 
held at 1.0, its new value is 1.0 + LY. Moreover, this second increment depends 
indirectly on X, and as long as X is held constant the value of Y is maintained at 
(1.0 + LY). At this point the secondary change in Y of LY units also passes on 
through the self-loop. Multiplied by the return effect of the loop, it adds another 
increment LY

2 to Y. Thus the value of Y becomes 1 + LY + LY
2 and will be 

maintained at this level as long as X stays constant. Obviously the tertiary change 
in Y also passes through the loop and causes another increment LY

3    to be added to 
Y. Indeed, this process continues indefinitely, and the final value of Y must be 
equal to the following summation. 

 

This summation continues on into infinity. Nevertheless, it can be shown 
mathematically that Y converges on a definite final value if only LY is a 
fraction—that is, if -1.0 < LY < + 1.0. (If LY is not a fraction, the series of 
summations would not converge and the loop would be unstable.) Furthermore, 
the value of Y will closely approach its final value after only a few cycles. This is 
because each of the later terms in the series is a fraction taken to a very high 
power and the later increments are quite small; for example, if LY = (½), 
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then LY
5   = (½)5 = (1/32). The value of this summation can actually be defined 

exactly. In particular, it can be proved mathematically that the following is true 
when LY is a fraction: 

 

This, of course, is the quantity that appears when Mason's principle is used. In 
more complicated systems Mason's principle similarly defines a divisor that 
reflects the ultimate consequence of repeated cyclings through all relevant loops. 

If the value of LY is positive, then (1 - LY) is a number less than 1.0 and 
[1/(1-LY)] is a number greater than 1.0. Thus effects on open paths touching the 
loop are exaggerated or amplified. If LY is negative, then (1 - LY) is greater than 
1.0 and [1/(1 - LY)] is a fraction. Therefore open path effects passing the loop are 
diminished, attenuated, or controlled. 

As noted above, parenthetically, the stability characteristics of a system with a 
single loop can also be deduced from the value of the loop's return effect. If the 
absolute value of the return effect is equal to or greater than 1.0 (i.e., the return 
effect is either 1.0 or greater or -1.0 or less), the system will be unstable. Given 
any input, the values of variables will increase endlessly in one direction or 
another. If the value of the return effect is between –1.0 and + 1.0, a system 
containing only this one loop will be stable. A system with multiple loops may be 
unstable even though each loop is stable individually. Also, it is possible for 
some loops to be individually unstable while the system as a whole reaches 
equilibrium because the loops counteract one another. The net impact of multiple 
loops on system stability can be assessed, but the techniques require somewhat 
complicated mathematical analyses that give explicit recognition to system 
dynamics (see Chapter 6 references). 

Relevant loops that do not actually touch an open path lack their full impact on 
that path. In general, their effects are attenuated by their remoteness from the 
main path, and adjustment of the numerator of the transmittance expression is 
required to reflect this fact. However, this adjustment is obtained routinely when 
rule II.16 is applied.1 

Rule II.16 has been stated to apply even to extremely intricate networks. 
However, if there is only a single loop in a diagram, its impact is simply to 
 
1 This function of the multiplier terms obtained by Mason's rule was brought to my attention by
James A. Davis. 
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adjust all the open paths it touches by the factor 1/(1 -L). One demonstration was
provided in 2.35. Other examples are given in 2.36: 

 

 

 

2.36 

Only the (X Y Z) open path is affected by the loop; hence only one open 
path effect is adjusted above. 

The following more complex example displays all the key aspects of rules II.15 
and II.16 and also illustrates the use of numerical subscripts in dealing with 
larger systems. 

2.37   Find the total effect from X1 to X5. 

There are two open paths from X1 to X5: 
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There are two loops in the system: 

 

Thus the total effect from X1 to X5 is 

 

It usually saves effort to expand the bottom quantity first because it 
appears in both the numerator and the denominator. The result of carrying 
out the multiplication is 

 

The two effects in the last term are associated with the paths of touching 
loops and that term is deleted. 

This equation can now be used to rewrite the formula for T 51: 

 

Working out the product in the top gives 

The underscored terms multiply effects associated with touching paths, 
and these terms are dropped from the total expression to give 

 

or, substituting the more specific expressions for each effect, 

 

These examples have shown the analysis of loops in systems without
disturbances. Disturbances were not shown on the diagrams for the sake of
clarity, and the same procedures apply, without modification, when disturbances
are present. 
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Reduced Form of a System 

II.17  Once all total effects, relating every dependent variable to all the input 
variables, have been obtained, a reduced-form diagram can be drawn to show 
each dependent variable directly linked to the inputs and eliminating intervening 
variables. 

Two examples are given in 2.38. 

  

 

2.38 

reduces to 

reduces to 

As these examples show, loops are eliminated in a reduced-form diagram. 
Reduced-form diagrams are subject to the usual flowgraph rules. Thus by 

drawing the reduced form and applying these rules the value of any dependent 
variable can be expressed simply as a weighted sum of system inputs, even when 
the system contains complex feedback loops. The coefficients in the reduced-
form diagram (the T's) consist of the expressions for the total effect between each 
input and each dependent variable, defined in rule II.16. 

One unique benefit of flowgraph analysis is that the effect of a single input on 
a focal variable can be defined without deriving the full reduced form.2 This is 
not generally true of algebraic approaches. 

Semireduction 

The fact that the reduced form eliminates loops is of crucial importance in causal 
analyses. It is frequently desirable, however, to reduce a graph only 
2 This observation was communicated to me by Doris Entwisle. 
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in part by eliminating the loops but leaving the rest intact. This can be done by
creating additional hypothetical variables corresponding to variables in the loop
and reducing the loop onto them. 

II.18   Loops can be eliminated in a graph by reducing them onto hypothetical 
"input" variables intervening between the loop and other parts of the graph. 

For example, if Y and Z are variables linked by a loop, two new variables Y' and 
Z' are created. The hypothetical Y' is entered as an intervening variable between 
the sources of Y (outside the loop) and Y itself. Similarly, Z' becomes an 
intervening variable between the outside sources of Z and Z itself. An example is 
given in 2.39. 

 

 

 

2.39 

becomes 

Notice that no symbols are attached to the arrows from the hypothetical sources; 
this implies that these arrows have coefficients of 1.0. Thus the effect to, say, Y 
from any of the original sources of Y is the same in the modified graph as in the 
original graph. 

Now, using the ordinary reduction procedures defined in rule II.I7, applied to 
the subgraph consisting of the hypothetical variables and the loop, the values of 
the original loop variables can be expressed in reduced form. The example is 
continued in 2.40. 

2.40 
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becomes 

 
where L = cd 

 

 

 

 

 

 

If a loop variable has only one outside source, the hypothetical variable is 
redundant and may be eliminated, as indicated by the examples in 2.41: 

2.41 

becomes 

or 

or 

Y has no outside source 
and no hypothetical 
variable is provided  
for it. Thus the above 
becomes 

or 

or 

becomes 

or 

or 
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Elimination of a loop in this way maintains the correct relations between the loop 
variables and all the original inputs. Moreover, reduced loops maintain the proper 
relations among variables "above" and "below" a loop, as illustrated in 2.42. 

 

 

 

 

 

2.42 

becomes 

Nested loops also can be semireduced as illustrated in 2.43. 

2.43 

becomes 
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or 

where 

 

  

Extrication is another form of semireduction that will be useful in Chapter 5 
when we study a procedure called two-stage least squares estimation. 

II.19 A selected variable may be "extricated" from loops by eliminating any 
feedback arrows branching away from it and representing all other dependent 
variables in the system in reduced form. 

2.44 

can be drawn with Z extricated 

The dependency of Y on Z is obscured in the revised diagram but all total 
effects from the sources are accurately represented: 
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can be drawn with Y extricated: 

 

 

where ∆ = 1 -ae -cd. Again, total effects from the sources are represented
accurately in the revised diagram: 

 

 

 

Extricating a variable constitutes an alternative way of reducing loops, and it
keeps intact more of the original loop relationships than semireduction by rule
II.18. Reduction by extrication, however, is not symmetric and alternative
reductions are always possible, as shown in 2.45. 

2.45    The first example in 2.44 can also be drawn with Y extricated: 

Similarly either X or Z may be extricated in the second example: 

X extricated 

Z extricated 
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Research Applications 

Extrication provides insight into the relation of a loop variable to external
(nonloop) sources. The first extrication in 2.44 shows that Z changes e units
when X changes one unit but a change in X produces a further indirect effect
because of changes in Y via the loop. Extrication partitions the effect of an
external source into a direct component and an indirect component due to loop
dynamics and shows that these two different kinds of effect are simply
summative. 

Extensions of Flowgraph Analysis 

Additional rules for graph analysis exist, and, in particular, there are rules for 
graph inversion. Roughly, this means changing the direction of arrows to 
correspond with the rewriting of an equation like Y = a·X as X = Y/a. The 
inversion rules are not presented here, but more advanced texts on flowgraph 
analysis listed in the references present rules for graph inversion. 

The 19 rules above allow us to diagram and analyze systems with a variety of 
structures, including those with loops and nests of loops. It should be noted, 
however, that large complex systems demand such involved graphs that it is often 
practical to convert them to sets of structural equations and use conventional 
mathematics for analysis. 

RESEARCH APPLICATIONS 

A basic purpose of theorizing is to organize information in a way that will 
develop its nonobvious implications. The statement of a theory in terms of 
simple pairwise relationships generally does not do this. The propositions must 
be manipulated logically to produce deductions that give new insights. The 
preceding rules provide a means of sounding the deeper implications of a theory 
that has been represented in diagrammatic form. 

Critical Cases 

A causal theory implies that an observed case should have a particular 
configuration of outcome values once the values of the inputs have been set 
and the causal processes have had sufficient time to operate. Moreover, a 
causal theory states the sequence by which this configuration should 
develop—the process of adjustment should begin at the source and cascade 
along the arrows of a flowgraph to various dependent variables. Thus cases 
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that can be observed during the process of reaching their final configuration may
serve as critical cases for theoretical analysis. 

Suppose a simple chain theory is under consideration: X→Y →Z, in which all
the relationships are positive. Further, suppose that a case can be found in which
X suddenly takes on a very high value, whereas both Y and Z are low.
Theoretically, this configuration should not last because Y is directly dependent
on X and so should increase in value; Z, which in turn depends on Y should
increase also. If these hypotheses were confirmed by further study, the theory
would have some degree of confirmation. 

This is an approach taken by many theorists to document their theories; for
example, Meggers3 used the technique to increase the credibility of the thesis that
cultural complexity is directly dependent on the cultivation potential of land
occupied by a society. Mayan satellite communities, sent off from the central
society to sites in the jungle, took on an extremely low value on the cultivation-
potential variable, whereas the dependent variable of cultural complexity initially
retained a high value. Accordingly, if the theory is correct, the extreme low
cultivation potential ultimately should have produced reduced complexity as well.
Through historical reconstructions, Meggers found that this indeed was the case.
The satellite communities in the course of a few centuries were reduced to
“primitive” cultures. 

Explanation 

Reduced-form expressions define the values of dependent variables in terms 
of the values of system inputs. In linear systems such algebraic expressions 
can be inverted to show that a particular value on a dependent variable 
implies a predetermined value on the source variable. Suppose, for example, 
that “crime rate” (R) is increasing and that it is known to be dependent on 
three sources, W, X, and Y. Suppose that W and X show no notable changes in 
recent history but that Y recently has taken on a new value that is now being 
maintained as a constant. It would be plausible to say, then, that the change in 
Y is what accounts for the increase in crime or that the increase is due to 
disturbances not considered explicitly. If we assume that disturbances are 
minimal, the reduced-form expression (TRY) relating R to T may be of interest 
in assessing whether the crime-wave has reached its peak or will continue 
to grow. If the present level of Y multiplied by the reduced-form 
3 Betty J. Meggers. “Environmental Limitation on the Development of Culture” American 
Anthropologist, 56 (1954), 801-824. 
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expression yields a value close to the present crime rate, the surge would seem to 
be over. If it yields a value larger, further increases in crime may be expected. 

The value of such analysis for explanation is that we can go far beyond simple 
interpretations and seek out remote and indirect causes even in complicated 
systems. With multiple paths and intervening loops it becomes almost impossible 
to state adequate verbal explanations of phenomena in terms of remote causes, 
but it is not impossible with analytic procedures. 

Of course, the logical power gained by graph analysis does not reduce the 
uncertainty of explanations when uncertainty is a part of the system being 
analyzed (as in unspecified disturbances affecting crime rate). Also, we either 
have to estimate or guess the values of structural coefficients (i.e., the magnitudes 
of effects) before the analysis has sufficient specificity to be of value. 

Prediction 

The reduced-form expressions obtained from graph analysis constitute input-
output equations for a system. Given a particular configuration of values among 
the input variables at a given time, the ultimate consequences for all dependent 
variables can be calculated. Thus a theory, along with numerical estimates of the 
structural coefficients may be used to anticipate future events that follow as 
repercussions from present changes. The use of graphs and reduced-form 
expressions provides two benefits over more informal approaches to prediction. 
First, a change in an input can be traced readily to all its consequences, even 
when multiple and convoluted pathways are involved. Second, changes in a 
dependent variable can be estimated from all the system inputs, thereby avoiding 
oversimplifications and errors of judgment. 

Interdiction 

Flowgraphs, and their reduced-form expressions, can guide policy decisions by
indicating the source variables that can be changed to achieve a desired effect, by
suggesting how much manipulation is necessary to obtain the desired change,
and by revealing the additional effects that a manipulation will have besides the
desired one. 

In defining the source variables that may be manipulated to achieve a
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desired effect, the flowgraph analysis serves to emphasize that undesirable 
outcomes need not be undone directly; that is, an outcome Z may have an 
unwanted value because of its dependence on, say, input X, and one way to 
eliminate the unwanted value of Z is to undo it by changing X; but if the 
dependent variable has another source, Y, then the unwanted value of Z may be 
eliminated by manipulating Y instead. Recognition of multiple sources provides 
increased flexibility in policy in terms of practicality, costs, and ethics. 

With numerical estimates of the coefficients in reduced-form expressions it 
becomes possible to define the amount of change in a source that is needed to 
achieve a desired change in an outcome. This kind of quantification lends itself 
readily to objective analyses of the best way to proceed. It may be true, for 
example, that one source has a large effect on a dependent variable of interest but 
that costs or ethical factors prohibit manipulation of this sort. Then a less efficient 
manipulation on another source, or a combination of manipulations on several 
sources, may be preferred and relatively exact costs-benefits analysis can be 
carried out by using the reduced form expressions. 

Once a particular source or set of sources has been chosen, the consequences of 
the manipulation can be traced not only to the outcome of interest but to other 
outcomes in the system as well by using the reduced-form expressions for the 
other variables. Thus by analytically simulating the process before it is 
implemented we may conclude that the overall configuration of effects produced 
by the manipulation is not so desirable as we first thought. In such a case, of 
course, it is possible to continue the analysis by seeking a source or set of sources 
to manipulate that gives optimal benefits and at the same time incurs minimal 
damage. 

SOURCES AND ADDITIONAL READINGS 

Another introduction to elementary flowgraph analysis, oriented for social 
scientists, is provided by Arthur L. Stinchcombe, Constructing Social Theories 
(New York: Harcourt, Brace & World, 1968). In addition, many textbooks on 
systems analysis devote a section or a chapter to flowgraph analysis; for 
example, Arthur D. Hall, A Methodology for Systems Engineering (Princeton, 
N.J.: Van Nostrand, 1962). A highly readable survey of more 
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advanced flowgraph techniques is made in W. H. Huggins and Doris R. Entwisle, 
Introductory Systems and Design (Waltham, Mass.: Blaisdell, 1968). This source 
provides numerous examples and problems with solutions. Charles S. Lorens, 
Flowgraphs for the Modeling and Analysis of Linear Systems (New York: 
McGraw-Hill, 1964), presents the techniques in a more mathematical format and 
shows how applications can be extended to a number of technical problems of 
general interest. 

EXERCISES 

1. A structural coefficient has units of measurement attached to it, even though 
the units are rarely shown on flowgraphs; for example, suppose a structural 
coefficient from variable X to variable Y is .4. This means that the causal operator 
generates .4 units of Y per unit of X, and thus the complete coefficient is 

Suppose occupational status is measured on a scale of rated social standing (such 
as that developed by the National Opinion Research Center): we can call each 
unit on the scale a NORC for convenience. Also, let education be measured in 
terms of years of schooling, or “schoolyears.” Finally, suppose the following has 
been discovered: if man A has an occupation 20 NORCS above that of man B, 
then A’s sons typically have three schoolyears more education than B’s sons. 
Given this “finding,” what is the complete coefficient, with units, relating father’s 
occupation to son’s education? 

2.  Suppose a man’s occupational status is assessed as 60 NORCS. Use the result 
from problem 1 to determine the expected education of his sons. In particular, 
show how the units of measurement attached to the father’s status cancel those in 
the structural coefficient to yield the result. 

3. Suppose that some misfortune causes a man to drop 10 NORCS in 
occupational status during his early adult life. Using the result from problem 1, 
determine the expected impact of this on the education of his sons. In particular, 
show how the units of measurement attached to his drop in status cancel units 
attached to the structural coefficient to yield the result. 
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4.  Suppose that the structural coefficient relating a son’s education to his 
ultimate occupational status is 

Use this and the result in exercise 1 to predict the occupational standing of the 
sons of a man with an 80-NORC occupation. Show how units of measurement 
cancel in the calculations. 
5. Suppose we are studying a society in which the relations defined in problems 1 
and 4 hold and in which fathers typically use the contacts and influence 
associated with their statuses to improve their sons’ standings directly. Assume 
that the structural coefficient from father’s status direct to son’s status is 

 

(a) Provide a flowgraph for this hypothetical system of intergenerational 
mobility that shows the structural coefficients with their units attached. (.Ignore 
the possibility of disturbances.) 

(b) Use graph reduction rules to write the equation relating a father’s 
occupational level to his son’s. Carry units of measurement through the reduction 
process. 

(c) In this system what is the expected occupational level of a man’s son when 
the man has an 80-NORC occupation? 
6.  It possibly is true that 

• increasing the proportion of poverty-level people in a city increases the 
crime rate; 

• a high crime rate generates demands for more police; 
• a greater density of police in a city deters crime. 

Let the variables be defined as follows: 

number of impoverished in city 
number of dwellers in city 

number of crimes in city 
number of dwellers in city 

number of police in city 
number of dwellers in city 

I (proportion impoverished) is 

C (crime rate) is 

P (police-to-citizen ratio) is 
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Also let the numerical values of the structural coefficients for each of these 
relations be represented by d, e, and f, respectively. 

What are the signs of each coefficient? What are the units of each coefficient? 
Draw a flowgraph for the system and include the units associated with each 
coefficient. 
7.  What units are attached to the return effect of the loop in problem 6? How 
would the return effect be affected if the crime rate had a different base—say, 
crimes per 1000 dwellers rather than crimes per dweller? 
8.  Interpret the meaning of the following interdictions in terms of the system 
defined in exercise 6 and indicate the effects on crime rate and the police ratio. 

(a) A minimum-income program is instituted to lift almost all persons out of 
poverty. 

(b) Without changing actual incomes, increased effort is given to a welfare 
program in which the impoverished are provided with basic material needs and 
are insulated from stresses and debasements that might lead them to criminal acts. 

(c) Police are given improved technology to increase their power and 
efficiency, and the mass media are encouraged to publicize it. 

(d) Federal funds are allocated to all cities to increase their police forces by 
one officer per 10,000 dwellers. 
9.  The causal connection from crime rate to police ratio in exercise 6 may arise 
because of politicalization of law enforcement; that is, demands for more (or 
fewer) police are made by politicians and the mass media depending on changes 
in the crime rate. Can we expect crime to be permanently eradicated once this 
political operator enters into a law enforcement system? Why? 
10. Again we continue with the assumptions presented in exercise 6. This time 
the problem is to weigh the impact of adding an additional control loop to the 
system by means of a federally sponsored program. In one plan the variable, 
federal support of local police, is linked to the system so that a high level of 
support leads to an increased police ratio and a high police ratio leads to reduced 
federal support. 

 

A second plan links national police (such as FBI or Treasury agents) directly 
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to a city’s crime rate. The higher the crime rate, the more agents assigned to that 
city, and the more agents assigned, the lower the crime rate. 

Assume that the programs are designed so that the power of the control loops is 
the same in both cases; that is, j · g = k · l = L. Which program will lead to the 
greatest overall reduction in crime? Explain this result in words. 
11. Let the strength of the military establishments in the United States, the USSR, 
and the Peoples’ Republic of China be symbolized by A, R, and C, respectively. 
A single scale of measurement presumably applies to all three variables. Suppose 
that the military strength of any one nation is determined by the following: 

• The size of the territory being defended by the nation (T). A larger area 
generates a larger defensive force, with the nation’s military-
administrative branch acting as operator (a). 

• The nation’s level of achievement in basic science (S). Scientific 
advances of all kinds have been converted repeatedly to advances in 
military technology, with the military-industrial complex serving as 
operator (d). On the other hand, military research and development 
programs seem to have little impact on pure science (as distinguished 
from technology), and the causal direction can be treated as one-way. 

• The military strengths of the other two superpowers. Americans are 
familiar with the routine of investing more in the military as a response 
to increased strength of another superpower. We may assume that the 
same process occurs in the other nations as well. In each case the 
operator responding to foreign moves (f) is a complex assembled from a 
nation’s intelligence, political, and military-industrial sectors. 

(a) Draw the flowgraph representing this system, using subscripts whenever 
necessary to distinguish between variables and operators. Also write out the 
structural equations. 
 (b) How many loops are in the system? Which are amplifying loops and 
which are control loops? 
 (c) Find the total effect (T) from the US level of scientific advancement 
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(SA) to US military strength (A). In ordinary language describe how each loop in 
the system contributes to this total effect. 
12.  We continue with the system in exercise 11. Assume now that increased 
military strength in one nation generates a constant amount of increase in the 
other two nations and that the relations are the same, regardless of which nation 
is the source. In other words, all f’s are positive and all f’s are equal. In addition, 
assume that the time required for a response is the same, regardless of the nations 
involved. Under these circumstances the system will be stable only if the value of 
f is less than .5. (This was determined by analyzing the system dynamics.) 
Interpret the meaning of f coefficients with values less than .5 and on the basis of 
your interpretation estimate whether this international system would be stable or 
unstable. 
13.  (a) Extricate the US military strength from the system introduced in exercise 
11. For simplicity assume again, as in exercise 12, that the f’s are all equal. 

(b) Perhaps a certain kind of person actually perceives the system in its 
extricated form. If so, operators (or accountings) for the new arrows that are 
introduced must be provided. What kind of operators could explain these paths? 
How would such a person explain the changes in military forces occurring after a 
new advance in American science? After a new advance in Russian science? 
What are the strengths and weaknesses of perceiving the system in extricated 
form, assuming that the original feedback system is a more accurate model? 



 
 

3 STATISTICAL 
CONCEPTS 

A flowgraph describes the causal processes impinging on a particular instance of 
a social system (e.g., a family, firm, or ecological setting) and the same structural 
description may not be apropos for any other cases. This, however, is not the 
usual goal of social research. More often a model is sought that generalizes to a 
class of cases—for example, all father-absent families, all banks, all frontier 
towns—such that the same system description can be used to understand the 
outcomes of any case in terms of the common causal structure and that case’s 
unique inputs. Then, given any case, something is known about its mode of 
operation, some of its history can be inferred from its present state, and 
predictions can be made about how it would respond to new inputs. 

Considering a whole class of cases at once moves us into a different realm of 
causal analysis than the one we have considered so far. We are no longer dealing 
with a single system, considering how it might respond to this or that input. 
Rather we are now attending to a population of equivalent systems and 
considering the distribution of outcomes produced by each case responding to its 
own inputs. 

This expansion yields new power in theoretical analyses and in empirical 
research aimed at causal inference and the quantitative description of systems, as 
discussed in Chapters 4 and 5. To develop these benefits we must have a 
language for describing populations, particularly for describing their distributions 
on variables, and how their distributions on different variables are related. This is 
a focus of statistics and some elementary statistical concepts are outlined in this 
chapter. 

DISTRIBUTIONS 

A structural equation defines the algebraic relation existing between values of
cause and effect variables when the cause is being maintained at a constant
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completed in producing the outcome; 
Distributions  

value and all causal operations have been 
½
for example, in the simple system, X → Y, the value of Y is determined 

completely by X, and if X is set at a value and held there then (sooner or later) Y 
must have the value of X/2. If X is set at 1, then Y should be ½; if X is set at 5, Y 
should equal 2.5. 

Suppose that a case is observed in which X somehow has taken on the value of 
+1.0; another is found in which X is -3.0, another in which X = -1.0, and still 
another in which X = 3.0. From the equation Y = X /2 it is to be expected that Y 
has the respective values of +.5, -1.5, -.5, and +1.5. The table in 3.1 has been set 
up to display all this information in concise form: 

3.1 Distributions on two variables, X and Y 
 X Y 

Case Value Value 

1 +1.0 +.5 
2 -3.0 -1.5 
3 -1.0 -.5 
4 +3.0 +1.5 

The columns in 3.1 display the variables X and Y in something of a new light. 
A variable takes on different values as we proceed down the columns—the value 
varies depending on the case observed. Certainly X (or Y) still represents a 
variable causally related to the other variable in the system, but the multiple 
values within each column emphasize that X (or Y) also has a distribution in this 
particular cross section of cases. Because distributions are the basic focus in all 
that follows, it is useful to conceptualize a distribution graphically and to provide 
concepts for characterizing it as a whole. 

Graphs of Distributions 

The distribution of X values in 3.1 can be represented graphically by showing the 
scale of X measurement as a horizontal axis and representing the number 
 



 84 Statistical Concepts 

of cases at each measurement point in the vertical dimension; for example, the X
(and Y) distribution in 3.1 would be graphed as follows: 

 

 

 

3.2 Graphs of the distributions in 3.1. 

Distributions typically involve more cases than this—hundreds or thousands—
and the graph of a distribution takes on a shape as more cases are added; for 
example, in 25 cases the distribution of X may take the form shown in 3.3. 

3.3   Possible distribution of 25 cases on a variable X. 

As the number of cases gets larger still, the top of the distribution looks more and 
more like a smooth curve, as illustrated in 3.4. 

3.4   Possible distribution with a large number of cases. 
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As shown in 3.4, the distribution of a variable need not be symmetric. The 
validity of the analyses that follow does not depend on symmetry. In particular, 
none of the following analytic procedures depends on the assumption that a 
distribution has a “normal” shape: 

 

3.5 Normal curve. 

Normal distributions are of major importance in probability theory, so they are of
interest when a probabilistic inference about all cases in a population is
attempted, given information on only a few. However, normal curves need not be
assumed to characterize distributions when work is being done at a purely
analytic level of systems analysis because the analytic procedures are developed
in reference to the population of all existing cases; hence no probabilistic
inferences are made. Only when we are estimating the values of structural
coefficients from sample data does the assumption of normality become a
consideration, at which time the normality assumption is involved in developing
a judgment of confidence in the results of estimation. (However a pattern in
which the distributions on some variables is asymmetric and others are
approximately normal may suggest that the underlying system is not strictly
linear; see exercise 2.) 

The statistical study of static systems does involve another assumption about
the distribution of variables. It is assumed that the diversity on any variable is
finite, meaning that the probability of a case existing above some high value on
the measurement scale or below some low value on the scale is extremely small.
The prior restriction of analyses to stable linear systems ensures this; therefore no
new assumption needs to be made at this point. 

The Mean 

The mean is the center of gravity of a distribution—the point on the measurement 
scale at which a cutout of the distribution would just balance if placed 
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on a fulcrum. A mean is calculated by adding up the values of all cases and 
dividing by their number. 

The mean has such important mathematical characteristics that it is applied 
over and over, almost whenever a distribution of any kind turns up. Accordingly, 
it is useful to develop some special rules for working with means in populations. 

 

 

3.6   ALGEBRA OF EXPECTATIONS 
The “expected value” of a variable is its mean, computed in the population 
of all possible cases. The expected value is symbolized by an E preceding 
the variable name given in parenthesis; for example, E (X) is the mean of X 
over all cases in a population. If a variable is defined in terms of an 
algebraic expression, the expected value of the variable can be defined in 
terms of the algebraic expression by using the following rules. 

1. The expected value of a constant times a variable equals the constant 
times the expected value of the variable. 

 , . 

 2. The expected value of the sum of two variables equals the sum 
of the expected values. 

3. The expected value of a variable times itself or times another variable 
cannot be decomposed: 

cannot be reduced further 

EXAMPLE 
Suppose Z is defined by the equation 

Then the expected value of Z is 
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Distributions 

Despite the fundamental importance of means, they will not appear here in 
expressions concerning distributions of variables because henceforth it is 
assumed that variables are measured on scales adjusted so that the zero point of 
the scale is at the mean of the distribution; that is, variables are assumed to be 
measured in terms of deviation-from-mean scores or just deviation scores. As 
noted in Chapter 2, flowgraphs, and the expressions obtained from flowgraphs, 
can be simplified if measurement scales are adjusted so that constant terms drop 
out. That is exactly what is being done here. The use of deviation scores 
eliminates constants from diagrams as well as from derived expressions and this 
convention simplifies statistical analyses. As pointed out in Chapter 2, adding or 
subtracting constants to adjust measurement scales to more convenient forms 
does not constitute a restrictive assumption in static analyses. Deviation scores 
are simply measurements that have been adjusted by subtracting a constant—the 
expected value of the variable—from every original value. 

No change in symbols is introduced to signal the fact that measurements are 
now presumed to be in terms of deviation scores. Rather the convention can be 
viewed as retroactive to preceding discussions. 

Variance 

The distributions generated by the relationship X → Y, shown in 3.2 have the 
same mean (.0) but there is an obvious difference 
X distribution has a greater range than the Y dist
values, on the average, are further from the center
values are from the center of theirs. The X values s

The most useful measure of diversity—the var
distance of individual cases from the mean o
convention of measuring all variables in terms of 
be obtained merely by squaring observed values a
variance, represented by σ2, is the expected value o

3.7   DEFINITION OF VARIANCE 
 ½
in how they are spread out: the 
ribution. Put differently, the X 
 of their distribution than the Y 
how more diversity. 
iance—is the average squared-
f the distribution. With the 

deviation scores, variances can 
nd taking their mean. Thus the 
f the squared deviation scores. 
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when the measurement scale for X is calibrated in terms of deviation scores. 

EXAMPLE. 
The variance of the X distribution in 3.1 is 

The variance of the Y distribution is 

 

JOINT DISTRIBUTIONS 

A causal relation between two variables coordinates their values; for example, in 
3.1 the positive values of X are associated with positive values of Y and negative 
values of X are associated with negative values of Y. To study the coordination of 
two variables it is necessary to consider their joint distribution. 

Graphs of Joint Distributions 

A graph, or scattergram, of a joint distribution is made up by representing the 
measurement scale of one variable on the horizontal axis and the measurement 
scale of the other on the vertical axis. Cases with a particular combination of 
values on the two variables are shown as points on the graph. (If more than one 
case falls at a particular location, it can be indicated by writing the number of 
cases at that location.) 

From one standpoint a scattergram is simply a somewhat refined version of a 
cross-tabulated table, revealed by comparing the chart in 3.9 with the graph in 
3.8. 
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3.8    Scattergram showing a joint distribution of 10 cases on variables Y 
 and Z. 

3.9   The joint distribution of Y and Z represented in tabular form. 

   Y   
     

 –3 to 
-2.1 

-2 to 
-1.1 

-1 to 
-0.1 

0 to 
0.9 1 to 1.9 2 to 

2.9 
2 to 2.9      

     
1 

 
1 to 1.9       

  1     

0 to 0.9      
    

3 
  

Z       
-1 to -0.1      

  
2 

    
-2 to -1.1     

    
1 

 
1 

-3 to -2.1      
 

1 
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From another standpoint a scattergram represents a three-dimensional graph 
viewed from the top. Each point indicates a short one-unit line rising vertically 
from the paper and indicating that one case occurs at that location; a number on 
the graph means that a longer line rises vertically from that position (e.g., the 
number 2 in the graph of 3.8 indicates that a line two units long rises from that 
location). When a small number of cases is being considered, the surface 
produced by the tops of these vertical lines is irregular. As the number of cases 
grows very large, however, the surface smoothes out, typically taking on 
something like a bell shape. 

 

3.10  A possible smooth surface produced by the joint distribution of two 
variables when a large number of cases is considered. Such surfaces are 
typically bellshaped, though the bell may be distorted in various ways. 

When dealing with only a few hundred cases, the vertical dimension in 
scattergrams can be largely ignored in favor of attending to the pattern formed by 
points on the two-dimensional representation. If the values of two variables are 
coordinated to some degree, their joint distribution displays some characteristic 
pattern in a scattergram. 

3.11a   Scattergram for two variables with uncoordinated values. 

3.11b Scattergram for two variables whose values are coordinated to a 
considerable degree. The straight line passing through the points could be 
used to predict the expected value of Z, given a particular value of X. 
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3.11a 

 

3.11b 

3.11c 
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3.11c Scattergram for two variables whose values are coordinated to a 
considerable degree. The curved line running through the points could be 
used to predict the expected value of Y, given a particular value of W. 

 

Graph 3.11a indicates no coordination; the two variables are uncorrelated with 
one another. Graph 3.11b shows two variables whose values are related. The fact 
that the points seem to cluster around a straight line means that the relationship 
can be described as linear. Such linear relations are presumed in many statistical 
analyses and in all of the analyses in this book. 

Graph 3.11c shows coordinated variables, but the relationship is nonlinear. 
Special procedures would have to be adopted in causal analysis of the variables 
in this graph; for example, two approximately linear analyses may be carried out: 
one for values of W greater or equal to zero, another for values of W less than 
zero. 

Additional examples of linear relationships are given in 3.12, in which ellipses 
represent the outlines of distributions: 

3.12 

Positive relation; 
low degree of 
coordination 

Positive relation; 
moderate degree of 

coordination 

Negative relation; 
moderate degree of 

coordination 

Scattergrams are constructed typically from tables of observed values; for 
example, returning to the example introduced in 3.1, we get the graph in 3.13. 
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3.13 

gives the scattergram 

This example is interesting because the cases plot exactly along a straight line 
and suggest perfect linear coordination between X and Y. In fact, this is the case 
because the values of Y were generated from the values of X and the relationship 
X →Y. Because nothing but X determines Y, the coordination of their values must 
be perfect. It is instructive, however, to consider what would happen were a 
slightly more complicated causal pattern involved. 

Case X Y 

1 +1.0 +.5 
2 -3.0 -1.5 
3 -1.0 -.5 
4 +3.0 +1.5 

½

 

3.14 

implies Y = ½X + ¼W 
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If cases exist with the following values 

Case X W Y 

1 -3.0 -1.0 -1.75 
2 -1.0 +3.0 +.25 
3 +1.0 -3.0 -.25 
4 +3.0 +1.0 +1.75 

then the X, Y scattergram is 

 

Clearly, adding another determinant for Y caused the net degree of linear 
coordination between X and Y to decline. The points in the X, Y scattergram no 
longer fall exactly on the straight line, and it is no longer possible to make an 
exact prediction of the value of Y for a new case, given just its value on X. This 
illustrates the manner in which disturbances confound expectations. They add on 
variations that cannot be accounted for in terms of the variables that have been 
observed. 

Another thing to notice in 3.14 is that predictability went down, even 
though the causal relationship between X and Y remained the same as in 3.13 
(the effects of X on Y are exactly the same in the two examples). This is 
because in the second example Y has additional variations induced by W and 
so X determines a smaller proportion of Y’s total variance. More specifically, 
Y has a larger variance in the second example (1.56) than in the first example 
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(in which the variance is 1.25). Because the variable X contributes the same 
amount of variance to Y in both instances, it necessarily contributes 
proportionately less to the variance of Y in the second example, thereby 
becoming a poorer predictor than it was in the simpler situation. 

Covariance 

Scattergrams are useful for determining whether coordination exists between two
variables and what form it takes, but a more exact approach is needed to assess
the degree of coordination. The most useful measure is the covariance. This
index of coordination is analogous to the variance, but it characterizes the joint
distribution of a pair of variables rather than the distributions of a single variable.
The variance was obtained by multiplying the deviation scores by themselves and
averaging. Similarly, the covariance is obtained by multiplying the deviation
scores of one variable by the corresponding deviation scores on the second
variable, and averaging the products. A covariance is represented by σ
subscripted with the symbols of the two variables used to compute it. The order
of subscripts does not matter: for example, σXY = σYX. 

 

3.15   DEFINITION OF COVARIANCE 

Calculating covariances—example from 3.1, 

σXY = E (X·Y), when both X and Y are measured as deviation scores. 

Case X Y X· Y 

I +1.0 +.5 +.5 
2 -3.0 -1.5 +4.5 
3 -1.0 -.5 +.5 
4 +3.0 + 1.5 +4.5 

    
  Sum = 10.0 

If a covariance equals zero, it indicates that values of the two variables are 
completely uncoordinated (as in 3.11a) or perhaps that the relationship is 
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nonlinear (as in 3.11c). Nonzero values of a covariance reflect the magnitude of a 
linear relationship like that shown in the first or second figure in 3.12. A negative 
value signals a relationship like that in the third figure in 3.12. 

The covariance of a dependent variable and a source variable does not change 
if the system is modified by adding additional sources that are unrelated to the 
original source; for example, the covariance between X and Y is the same in both 
diagrams in 3.16. 

 

3.16   The covariance σ XY is the same in both cases, providing σX
2 is constant and

X and W are uncoordinated. 

The constancy of a covariance in situations like that in 3.16 is useful sometimes, 
but, on the other hand, it means that the covariance obviously does not reflect the 
loss in predictability that occurs when disturbances are added. Another index is 
needed to indicate degree of predictability. 

The Correlation Coefficient 

A correlation coefficient measures the degree to which variations on one variable 
can be predicted from information on another. One of the most important 
correlation coefficients is the Pearson product-moment correlation, ρ (rho), which 
is the ratio of the actual covariance between two variables to the maximum 
possible covariance. If the observed covariance is zero, ρ is zero, and this value 
thus signifies that there is no linear coordination at all between variables. If the 
actual covariance is equal to the maximum covariance, ρ equals 1.0, and this 
means that the values of one variable can be predicted perfectly from values of 
the other. The observed covariance may be negative, indicating that high values 
of one variable correspond to low values of the other; ρ also is negative in such a 
case, thereby reflecting the fact of inverted coordination. 

The maximum possible covariance is defined in terms of the product of two 
average deviation scores, one for each variable. The required quantities 
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for this computation are the standard deviations, or the square roots of the 
variances of the two variables. Variances, of course, are the mean squared 
deviations, and so the square root of a variance represents an average deviation 
score. 

Thus the formula defining the product moment correlation is 

 

3.17 DEFINITION OF PEARSON’S PRODUCT-MOMENT CORRELATION COEFFICIENT 

The creation of deviation scores by subtracting the mean of the overall 
distribution from original measurements has been a useful strategy for 
simplifying formulas, and standard deviations can be used in a somewhat similar 
way to obtain certain additional simplifications in the definition of ρ. 

Standard scores are deviation scores divided by the standard deviation of the 
distribution. The distinction between standard scores and ordinary deviation 
scores is reflected in the symbols for variables—lower case letters are used for 
standard scores. 

3.18 DEFINITION OF A STANDARD SCORE. It is understood that X is already 
 a deviation score. 

Variables measured in terms of standard scores always have a mean of zero (they 
are still deviation scores) and a variance of 1.0. This unique value of the variance 
is demonstrated in 3.19. 

3.19   The variance of a standardized variable is 1.0. 
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Now the value of 1/σX
2 is constant because it is the same regardless of the 

particular observation of X being considered at the moment. Because it is a 
constant, it can be taken outside the expected-value term to give 

 

 

 

Moreover the correlation between two variables expressed in standard scores is 
exactly equal to their covariance: 

3.20   The correlation of two standardized variables is the same as their 
 covariance. 

because 

By following a procedure like that in 3.19 it can also be shown that the 
correlation between two variables in standardized form is equal to the correlation 
of the variables in unstandardized form; that is, ρXY = ρxy. However, the 
covariance of two variables measured in terms of regular deviation scores is not 
generally the same as their covariance when measured in standard scores. There 
are no numerical limits for covariances in general, but the covariances of 
standard scores must fall within the range -1.0 to +1.0 because they are 
equivalent to correlation coefficients. 

LINEAR REGRESSION 

Coordination between two variables makes it possible to transform informa-
tion concerning one variable into information about the other; for example, 
referring again to 3.11b, it can be seen that the value of X has implications 
concerning the value of Z—a positive X value is usually associated with 
 



 99 Linear Regression 

positive Z, a negative X value generally implies negative Z. Actually, the line 
drawn through the points suggests that a particular X value can be transformed 
into the precise value of Z to be expected with that X, as demonstrated in 3.21: 

 

3.21 

Of course, the expected value of Z generated from the value of X is rarely exactly 
the same as the observed value of Z. Such exact correspondence holds true only 
for those cases that fall right on the translation line. Nevertheless, the predicted 
values provide better guesses about the values of Z than, say, just guessing that 
every case has a Z value equal to the mean value of Z over the whole distribution. 

Lines for translating values of one variable into expected values on another 
are called regression lines. If X is a causal determinant of Z, the word 
“regression” can be interpreted as follows: the line shows the value of Z to 
which all cases with a given X would “regress” if disturbances in Z were 
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removed. Regression lines may be linear (3.11b) or curvilinear (3.11c), but here
only linear regression lines are considered in accordance with the decision to
restrict attention to linear systems. The linear assumption is restrictive: it implies
that certain relationships (like 3.11c) either cannot be dealt with or must be
approximated, in one way or another, by linear relations. 

A regression line ideally defines a precise expectation about the value of a
predicted variable, given information on a predictor variable, and such precision
cannot be obtained just by eyeballing a line through a set of points. Some
objective procedure is needed to define the single best translation line. 

The best line is the one that comes closest to predicting the vertical positioning
of every point on the scattergram, and it is desirable to measure “closeness” in
terms of squared distances. Moreover, it is presumed that extreme points on the
scattergram are more crucial for positioning the line than those close to the
center; therefore the importance of each case is also weighted by its squared
deviation score on the predictor variable. The best line thus is identified as one
that produces the smallest sum of weighted squared distances between the line
and all points on the scattergram. Finding such a line is a problem that can be
solved mathematically by calculus. Only the results of the mathematical analysis
are considered here, however. 

The desired line always passes through the origin of the scattergram when
variables are measured in terms of deviation scores. In addition, the mathematical
analysis defines a regression coefficient, or slope, that equals the expected value
of the predicted variable when the predictor variable equals + 1.0. Thus we know
two points through which the optimal regression line passes, and thereby the
regression line can be plotted exactly. 

Having defined closeness-of-fit in terms of squared deviations weighted by
other squared deviations, it is not too surprising to find that the mathematical
solution for the regression coefficient is defined in terms of a variance and a
covariance. 

 

3.22 A regression coefficient is defined as the slope of a regression line for 
predicting Z from values of X. The order of subscripts on the regression 
coefficient is significant: the first is the predicted variable, the second is 
the predictor. 
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A subscripted letter b is conventional for symbolizing a regression coefficient. 
This is why subscripted b’s are avoided as symbols for structural coefficients: the 
letter b is reserved as a symbol for regression coefficients. 

The regression coefficient can be used in an algebraic formula to predict one 
variable from another, thereby eliminating the need to draw a graph. 

 

3.23 Use of the regression coefficient in a prediction formula. Z is the expected 
value of Z, given a value of the predictor X, when X and Z are measured in 
terms of deviation scores 

There is no statistical basis for deciding which variable should be the predictor 
and which the predicted, and indeed two regressions that will result in two 
prediction formulas can always be run. In general, the regression coefficients in 
the two formulas are not the same; that is, bZX  ≠ bXZ. In causal analyses a 
selection is made between the two coefficients on the basis of theoretical 
information. Attention is usually focused on the coefficient for predicting an 
outcome variable from values of a source variable. 

Residual Variance 

Suppose we calculated the average squared difference between observed values 
and the predicted values obtained from a regression formula. The resulting 
quantity is a variance—a mean squared difference between observed and 
expected values—that can be interpreted from three somewhat different 
perspectives. First, it is a measure of the scattering of points around the 
regression line; that is, this new variance equals zero if all points fall exactly on 
the regression line and it becomes larger than zero as the average distance
between points and the regression line increases. Second, it is a measure of the 
residual variations left in the predicted variable after predictions have been made. 
Thus it measures the extent to which variations in the dependent variable cannot 
be predicted. For the third interpretation suppose that the errors in prediction 
were caused by adding the values of a variable e to the predicted values. The new 
variance is the variance of this variable e, or σe

2. The variable e may be 
considered as a composite variable representing all factors that cause errors in 
prediction. 
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3.24   DEFINITION OF RESIDUAL OR ERROR VARIANCE 

Because the regression line was mathematically derived to take account of every 
bit of linear coordination between the predictor and the predicted 
 variable, the residuals, or errors in prediction, are themselves uncorrelated with 
the values of the predictor; for example, in a linear relation the prediction errors 
cannot all be positive when the predictor X is positive because such a situation 
would have forced the regression line to twist upward to take advantage of the 
extra predictability available from the residuals. This independence between 
predictions and errors permits a basic principle to be stated. 

The total variance in the predicted variable is equal to the variance of the 
predicted values plus the variance of the residuals. 

3.25  The variance of a variable can be partitioned into the component that is 
predictable from a linear regression plus the variance of the residuals that 
are left when the predicted values are subtracted from the observed values. 

A more convenient formula for calculating residual variance can be obtained by 
defining a coefficient of determination: 

The coefficient of determination for a linear regression is the variance of 
the predicted values divided by the variance of the observed values. The 
ratio is symbolized by a subscripted R2. 

When Z is predicted from just one other variable, the coefficient of 
determination is identical to the squared correlation coefficient: 

3.26   
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Given the formulas in 3.25 and 3.26, the value of the error variance can be 
defined as follows: 

 

3.27   This alternate formula defines the residual variance 

If only one variable (X) is used to predict Z, this is equivalent to 

MULTIPLE REGRESSION 

Predictions usually can be improved by using several predictor variables rather 
than just one—by moving from a bivariate to a multivariate analysis; for 
example, if the predicted variable is Z and it is coordinated with a variable Y as 
well as with the original predictor X, then perhaps Y can be used to predict some 
of the residual variations that are left after Z is regressed on X. If so, it actually 
should be possible to develop a single prediction formula to show the expected 
value of Z, given measurements on both X and Y. The variance of the residuals 
left after applying this new formula should be less than the residual variance after 
predicting from X alone. 

The basic rationale of multiple regression is to attempt to predict the residuals 
left from one regression by carrying out still another thereby building up a more 
accurate prediction based on multiple predictors. This essentially simple notion, 
however, is complicated by the requirement that the regression coefficients must 
fit together into a single prediction formula. This would not be a problem if 
predictor variables were always uncorrelated with one another, for then 
predictions from one variable would have no coordination with predictions from 
other variables, and the results of different predictions could be added together. 
But typically, predictors are correlated; so their predictions are coordinated to 
some degree, and the redundancy in predictions will create a bias if they are just 
added one to another. 

So the problem actually is defined as follows: obtain a single formula for 
predicting the value of one variable (Z) from the values of other variables 
(X, Y, etc.). Take into account any correlations among the predictors so 
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that each regression coefficient reflects only the differing predictions that would 
be made from variations in one variable when all the other predictors have a 
constant value. 

In effect, the mathematical solution of this problem calls for a multitude of 
different regressions; for example, the coefficient for predicting Z from X, 
controlling for Y, is obtained by first regressing Z on Y to obtain the residuals 
from that prediction. Then, in case there is any correlation among the predictors, 
X is also regressed on Y to obtain a set of residual X values that are uncorrelated 
with Y. Finally, the Z residuals are regressed on the X residuals to obtain the 
regression coefficient with the desired properties. The same steps are repeated to 
obtain the regression coefficient for predicting Z from Y, controlling for X. 

Thus the coefficients in a multiple regression problem represent the slopes of 
regression lines that predict the values of one set of residuals from the values of 
another. These slopes, or partial regression coefficients, are also symbolized by a 
b, but now with dot subscripts; for example, bZX.Y is the coefficient for predicting 
Z residuals from X residuals when both have been regressed on Y; bZY.X is the 
coefficient for predicting Z residuals from Y residuals when both have been 
regressed on X. 

Partial regression coefficients are not inflated by coordinated predictions 
because each coefficient depends only on the coordination between a predictor 
and predicted variable left after other predictions have been made and after the 
correlations among predictors have been statistically removed. Put together in a 
single formula they are nonredundant and provide a single unbiased prediction. 

 

3.28   This example of a prediction formula is based on multiple regression: 

where X, Y, and Z are measured as deviation scores. 

Fortunately a multitude of different regressions need not be carried out to
obtain partial regression coefficients. When there are just two predictors, the
formula in 3.29, obtained by mathematical analysis, accomplishes the same
result. 
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3.29   Calculating formula for a partial regression coefficient: 

When there are more than two predictors, the calculating formulas become 
complex and it is generally impractical to calculate coefficients by hand. 
Electronic computers are economical in such cases, and most computer libraries 
contain a multiple-regression program that will calculate partial regression 
coefficients from the variances and covariances of variables or from original 
observations on them. 

In the multivariate case, just as in the bivariate, the residuals can be obtained 
by subtracting predicted scores ( ) from original scores (Z). Again the nature oẐ f 
the mathematical solution guarantees that the residuals are uncorrelated with 
any of the predictor variables. 

The variance of the residuals from multivariate prediction can be obtained 
easily by using the multivariate definition of the coefficient of determination. 
This is provided by the formula in 3.30 in the case of two predictors. 

3.30   Coefficient of determination for two predictor variables: 

With more than two predictors the formula becomes complex. Computer 
programs ordinarily calculate the multiple regression coefficient, or R, and the 
coefficient of determination is simply the square of R. So the squared multiple 
correlation coefficient can be used in the top formula of 3.27 to define the 
residual variance in a multiple regression problem. 

STANDARDIZED COEFFICIENTS 

Regressions can be carried out with variables that have been standardized. The 
slopes of regression lines are generally changed by changing measurement 
scales to standardized form, and this is reflected in the use of a different 
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symbol for the standardized regression coefficients—a subscripted β instead of a 
subscripted b. The values of the standardized coefficients can be obtained 
without actually rescaling the original measurements and rerunning the 
regression as shown by the formula in 3.31. 

 

 

 

3.31    Standardized regression coefficients can be calculated from the statistics 
 for unstandardized data: 

In the bivariate case (one predictor variable) a standardized regression coefficient 
is identical to the correlation coefficient (ρ); the coefficient obtained when the 
original predictor and predicted variables are reversed also equals ρ. 

3.32   If there is just one predictor variable, then 

 These equalities do not hold generally in the multivariate case. In fact, then a β 
may even be outside the -1 to +1 range of the correlation coefficient. 

Partialed β’s may be obtained in the multivariate case directly from the 
correlations among variables. The formula, when there are just two predictors, is 
given in 3.33. 

3.33   Computing formula for a standardized partial regression coefficient: 

Most computer programs for regression analysis calculate the standardized 
coefficients as well as the unstandardized coefficients; problems involving more 
than two predictors are rarely calculated by hand. 
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The formulas for coefficients of determination given in 3.26 and 3.30 can be 
rewritten in different forms by using standardized regression coefficients. 

 

 

3.34   When there is just one predictor variable, 

When there are two predictor variables, 

The second formula can easily be extended to the general multivariate case or 
computer calculations can be depended on when there are more than two 
predictors. 

The formula in 3.27 can still be used to define the variance of the residuals left 
after subtracting predicted values from original values, but because measurement 
scales are now standardized the original variance of the predicted variable must 
be 1.0 and therefore the variance of the residuals is simply 1.0 minus the 
coefficient of determination. 

REGRESSION AND CAUSAL INFERENCE 

A regression equation is only a means of translating one kind of information into 
another. Causal processes may be the reason why such a translation is possible, 
but this does not mean that a regression equation will reveal those processes in 
any simple way. For example, the system Y  leads to 
coordination between the values of X and Y, allowing us to predict Y fro

ZX ca →←
m 

information on X. The regression equation Y = bYXX has some correspondence 
with the structural equation that specifies the causal linkage between X and Y, 
and in this simple case bYX is an estimator of a. However, one could use the same 
empirical coordination to predict values of X from values of Y, and the coefficient 
bXY would not be a direct estimator of a. Further, the system will coordinate Y and 
Z (because of their mutual dependence on X), allowing prediction from one to the 
other, even though these two variables have no direct causal linkage at all. In this 
case the regression coefficient will correspond to no single structural coefficient. 
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Moreover, coordination between variables can be produced by selection 
mechanisms that are unrelated to causal linkages between the variables; for 
example, suppose that cases occur in a population only if the sum of two 
attributes, X and Y is above a criterion value. Then, within that population, X and 
Y will be coordinated to some degree (low values on one variable must be 
associated with high values on the other), and perhaps a regression equation 
could be used to translate information on one variable into information on the 
other. The regression equation has no value at all, however, for inferring a causal 
linkage between X and Y because the coordination was not generated by causal 
relations between these variables but rather was imposed by a “gating” 
mechanism. 

It will be seen later that regressions are useful in causal analyses, but 
regression equations cannot be viewed routinely as structural equations directly 
representing causal processes. 

SOURCES AND ADDITIONAL READINGS 

Numerous serviceable texts on statistics are available—too many to list. The 
titles given here are mentioned because they are oriented explicitly toward the 
use of statistics in causal analysis and model building. An elementary 
presentation is provided by Hubert M. Blalock, Jr., Social Statistics (New York: 
McGraw-Hill, 1960); on regression techniques see F. Kerlinger and E. Pedhazur, 
Multiple Regression in Behavioral Research (New York: Holt, Rinehart & 
Winston, 1973). Arthur S. Goldberger, Econometric Theory (New York: Wiley, 
1964), provides a mathematical treatment of regression analysis and maintains a 
high level of clarity and relevance throughout. John P. Van de Geer, Introduction 
to Multivariate Analysis for the Social Sciences (San Francisco: Freeman, 1971), 
describes a wide variety of statistical procedures and uses flowgraphs to show 
how different analytic techniques —regression analysis, canonical analysis, and 
factor analysis—relate to various causal models. 

All advanced treatments of multiple regression and other multivariate 
techniques depend to some degree on the use of matrix algebra. An entertaining 
introduction to this topic is available in Philip J. Davis, The Mathematics of 
Matrices: A First Book of Matrix Theory and Linear Algebra (New York: 
Blaisdell, 1965). The Van de Geer and Goldberger texts provide additional 
instruction. 
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EXERCISES 

1.  A President of the United States might be treated as an operator who produces 
certain relationships. Is it possible to study a given presidency statistically within 
a static framework? 
 
2. The distribution of families on income is typically skewed—most of the 
families have relatively low incomes, whereas a few are worth millions. Assume 
that such a skewed income distribution occurs in a specially defined population in 
which the size of family dwellings is approximately normally distributed. Also 
assume that in this population the rich have larger dwellings. 

(a) Make a graph for plotting the joint distribution of income and dwelling size 
and roughly outline the shape that the distribution would require. 

(b) Could such a distribution be generated by a linear causal system involving 
a relation from income to dwelling size? Could the distribution be evidence of a 
developmental process as opposed to a causal process (see Chapter 1)? 

(c) Suppose another population were examined in which the distribution of 
dwelling size was also skewed, most families having relatively small dwellings. 
Could there be a linear relation between income and dwelling size in this case?  
 
3.  All buses have one driver. Suppose another driver with equal control of the 
vehicle were added beside the first but with a wall between them and their control 
actions summated before being transmitted to the vehicle. Would these buses be 
safer with two drivers determining the variations in speed and direction? 
 
4.  What can be said in the following instances: 

(a) A researcher finds a product-moment correlation of +1.08 between I.Q. and 
grade point average (GPA). 

(b) The unstandardized regression coefficient for predicting I.Q. from GPA is 
+10.00. 
 
5.  Convert the following expression to a more elementary form by using the 
algebra of expectations and the definition of the mean: 

 
(These X’s indicate original measurements, not deviation scores. Note, however, 
that the quantity in parenthesis represents a deviation score, and in fact the whole 
expression is the definition of the variance of X.) 
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6.  Reduce the following expression, as in problem 5. 

(Note that the expression defines the covariance of X and Y.)  
 
7.   Reduce the following expression. 

 
Here, however, presume that both  and e are measured as deviation scores. 
From your results specify exactly what must be true if the variance of a variable 
is exactly equal to the variance of predicted values plus the variance of errors 
from predictions. 

X̂

 
8. Suppose that βSF.E = .015, where S stands for a son’s occupational status, E 
stands for a son’s education, and F stands for a father’s occupational status. 
Interpret the “finding” from a purely statistical standpoint. 
 
9. In Bizarreville USA, the correlations among the variables in problem 8 are 

ρFE = -.60,   ρES = .30,   ρFS = .50 

Calculate the standardized partial regression coefficient βSF.E by using the
formula in 3.33. Interpret the meaning of the answer. 



 

4 PATH  
ANALYSIS 

Most causal analyses in the social sciences are conducted within the framework 
of cross-sectional statics. It is presumed that a single basic causal structure is 
operative for numerous separate cases and that each case is observed after its 
inputs have been set and held constant long enough for all causal consequences 
to be realized. Thus, for example, the socioeconomic achievement of individuals 
might be studied from this perspective, presuming that essentially the same 
system of personal, social, and cultural operators applies for all persons studied, 
that key inputs are set at some point early in an individual’s life, and that 
observations of the individuals are delayed until they have actualized the full 
consequences of their inputs. 

Such an orientation is static because observations are made after the causal 
consequences of the predetermined variables are realized, when both inputs and 
outputs are being maintained in steady states. Of course, this is the same 
condition that applied in Chapter 2. The approach is cross-sectional in that it does 
not focus on a single example of a causal system (as in Chapter 2) but on a 
multitude of cases with equivalent causal structures, all observed at more or less 
the same time. 

Within this framework knowledge of a system’s causal structure can be used 
to transform a statistical description of inputs into a statistical description of 
outcomes. The techniques are the topic of this chapter. On the other hand, given 
statistical descriptions of inputs and outcomes, it is possible to make some 
inferences about the causal structure that transformed one to the other. This is the 
topic of Chapter 5. 

All analyses in cross-sectional statics are based on the premise that the causal 
systems operating in different cases are equivalent: they have the same 
organization and structural parameters and the causal operators are in working 
order for each. In this and the following chapter it is assumed that these 
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requirements are met by careful definition of the set of cases to be considered, 
excluding those that have deviant structures or nonworking operators. 

FLOWGRAPH MODIFICATIONS 

Expressions for the variances, covariances, and correlations generated by a 
system can be read directly from a causal diagram that has been modified 
properly. The basic principles, called path analysis, were developed in the 1910s 
and 1920s by biologist Sewall Wright. The sections that follow describe how to 
modify a diagram so it is subject to path analysis and then rules are stated for 
expressing covariances, variances, and correlations as products and sums of 
diagram quantities. The conventions and rules of path analysis presented in this 
chapter differ somewhat from traditional presentations by Wright and others. The 
adjustments have been made to emphasize the basic simplicity of the procedures, 
to demonstrate that the procedures are applicable to studying covariances as well 
as correlations, and to extend routine path analytic procedures to the study of 
systems with loops. 

Loop Reduction 

As originally developed, path analysis applied only to systems without feedback 
loops of any kind. From one perspective this restriction still holds, and the theory 
of flowgraphs extends path analysis only by showing how loops can be removed 
from a diagram so that the ordinary path analysis rules apply. Because of its 
conceptual simplicity, this is the perspective adopted here. 

IV.l   Path analysis of systems with loops requires redrawing the system diagram 
with each loop or loop complex in semireduced form (see rule II.18). 

Actually, it would be possible to state special rules of path analysis for analyzing
loops in their original form, but such rules would add to the conceptual
complexity of path analysis. For an introductory treatment it may be preferable to
make the diagrams complex (by reducing all loops) but leaving the ideas simple. 
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Input Covariances 

The statistical outcomes of system operations depend on the system’s structural 
coefficients and the statistical characteristics of inputs. In turning from flowgraph 
analysis of individual cases to path analysis of a cross section of cases, 
modifications must be made in diagrams to summarize certain statistical 
characteristics of inputs. In particular, an explicit representation must be provided 
for the coordination of inputs before the system operates. 

IV.2  The covariances of sources must be represented on a system flowgraph 
before the diagram can be interpreted statistically. A covariance is represented 
graphically as a source for its two variables, and is linked to them by dotted-
rather than solid-line arrows. 

  

4.1    Elaboration of a diagram representing covariances among input 
 variables. 

becomes 

The dotted-line arrows are used because the covariance terms are not compatible 
with ordinary flowgraph analyses; they represent distributional quantities and 
are applicable only in deriving distributional statistics. 

In traditional biological and sociological path analyses correlations among 
inputs have been represented by curved double-headed arrows labeled with a 
symbol for the correlation coefficient. The convention adopted here provides a 
more distinctive signal for these special kinds of path (which is desirable when 
complex systems with loops are considered), and the treatment of covariances as 
“pseudo-sources” helps to simplify the statement of path analytic rules. For the 
sake of continuity, however, the old convention is retained when path analysis of 
standardized variables, the original concern, is discussed. 
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Disturbance Covariances 

Disturbance terms represent unspecified sources for each dependent variable in 
the system; therefore the statistical characteristics of disturbances must be 
considered in any study of the system’s statistical consequences. The covariances 
of disturbances with each other and with explicit inputs must also be added to the 
diagram as shown in 4.2. 

 

 

becomes 

4.2 

Clearly, disturbance covariances will complicate a diagram considerably. It will 
be seen later that if the covariance of two inputs is zero in value, that covariance 
contributes nothing to distributional statistics. Thus such a term can be deleted 
from a diagram without loss and will simplify appearance. In the following 
sections it is generally presumed that disturbance terms are not correlated with 
specified inputs or with one another; hence their covariances need not be added 
to the diagram. Path analysis rules are not restricted by this assumption. It is 
adopted only heuristically to keep diagrams simple. On the other hand, it is 
shown in Chapter 5 that uncorrelated disturbances are frequently required when 
identifying system operators in empirical data. 

ANALYZING STATISTICAL COORDINATION 

Coordinating Paths 

Causal relations can create coordination among system variables in three
different ways. 
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1. Two variables may have coordinated values because they are dependent on 
the same system sources (e.g., Y←X→Z, where Y and Z are mutually dependent 
on X). Changes in the source are transmitted to both dependent variables, causing 
their values to be coordinated to some degree. 

2. Two variables may also be coordinated because of preexisting coordination 
on source variables. This coordination causes outcome variables to be more 
aligned than would otherwise be expected; for example, if W and X are source 
variables and the system transforms values of W to get values of Y and values of 
X to get values of Z, then any preexisting coordination between W and X will tend 
to be passed on to Y and Z. 

3. If one variable causally determines another, either directly or through 
intervening variables, the values of the two variables are coordinated by the 
causal transformation of source values into values on the dependent variable. 

Coordinations produced by the first two mechanisms are referred to as 
spurious correlations in that they do not originate in direct causal linkages. 
However, in statistical analysis coordination is important whatever its source. 
Therefore the following rule, which defines the kinds of path in causal diagrams 
that generate coordination, makes no special distinction between the three 
mechanisms; it incorporates all three into the concept of a coordinating path. 

IV.3  A “coordinating path” between two variables consists of a sequence of 
arrows that fulfills the following conditions.. 

(a) The two variables of interest are the end points of the path. 
(b) The path consists of two subchains, each branching away from a  

variable or a covariance term on the graph and proceeding 
unidirectionally toward the end points. The variable or covariance 
term where the subchains begin is the path’s “origin.” The 
subchains point away from the origin toward the end points. 

(c) The path impinges on any variable or covariance term only once.  
(d) The origin of a path may be one of the end points, in which case 

one of the two subchains is not distinguishable and the entire 
coordinating path consists of a single subchain. 

Despite the lengthiness of this rule, coordinating paths are easy to identify. 
Essentially we begin at one variable, trace back along arrows to an origin, then 
forward until the other variable is reached. A coordinating path is 
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identified symbolically by the variables on which it impinges. The origin is 
identified by script or by a covariance symbol. 

 

4.3 

A single coordinating path exists between Y and Z: it is (YXZ) or (ZXY). 
The two identifiers are equivalent—they represent a single coordinating 
path. 

 

The only coordinating path for Y and Z is (YWσXZ). The σ in a path 
identifier always represents the covariance of the variables on either side of 
it. 

Here Y and Z have two coordinating paths: (YWZ) and (YWσXZ). 
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(XWYZ) is the only coordinating path between X and Z. (XWY) is the only 
coordinating path between X and Y. 

 

 

The procedure of tracing back from one endpoint, then forward to the other, must 
be adhered to rigorously. We cannot trace forward, then backward, or backward, 
forward, backward. In general, once we have begun tracing forward along 
arrows, the path cannot be extended by changing direction. 

4.4 

No coordinating path exists between X and Y in this diagram. In particular, 
(XZY) is not a coordinating path because the arrows do not lead from the 
origin to the end points. 

Here (XσY) is the only coordinating path between X and Y. 
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V and Z are coordinated by (VWσYZ) only. (VWXYZ) is not a coordinating 
path because it involves changing direction more than once. 

 

 

Part (c) of the rule, which states that a path cannot impinge on the same 
variable twice, further limits the possible definitions of coordinating paths in 
some cases, as illustrated in 4.5. 

4.5 

Y and Z have only one coordinating path (YXZ). In particular, (YXWXZ) is 
not treated as a coordinating path because it passes through X twice. 

Again, only (YXZ) is a coordinating path for Y and Z. (YXVWXZ) passes 
through X twice. 
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Part (d) of the rule extends the definition to the important special case in which 
the origin is identical to one of the end points. Its application is illustrated in 4.6. 

 

 

  

4.6 

X and Y are coordinated by the path (X Y). 

X and Y are coordinated by (XY). 
Y and Z are coordinated by (YXZ) and (YZ), 
 X and Z are coordinated by (XYZ) and (XZ). 

W and Y are coordinated by (WY). W and Z are coordinated by (WσXZ) and 
(WYZ). Y and Z are coordinated by (YWσXZ) and (YZ). X and Y are 
coordinated by (XσWY). Additional coordinating paths exist between X and 
Z. 

The identification of coordinating paths in diagrams with loops presents no 
special problems, provided that the diagrams are appropriately redrawn with 
loops in semireduced form. 

4.7 

is redrawn 

X and Y have one coordinating path, (X Y’ Y); X and Z have one 
coordinating path, (X Y’ YZ); Y and Z have one coordinating path (YZ). 
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 is redrawn 

X and Y have one coordinating path: (X Y’ Y); X and Z have one
coordinating path (X Y’ Z). 

 is redrawn 

 

Coordinating paths between W and Z (WσX Z’ Z), (W  Z’ Z), (W Y’ Z). There 
are six coordinating paths between Y and Z: (Y  Y’ W  Z’ Z), (Y Y’  Z), (Y Z’ 
W Y’ Z), (Y X’ Z), and two others. 

Covariance Analysis 

IV.4   A “coordinating-path effect” is the product of the structural coefficients 
along the path times the variance of the origin variable. If the origin is a 
covariance term, the effect is the product of the structural coefficients times that 
covariance term. 

A coordinating-path effect is symbolized by a C, subscripted with the path 
identifier. Examples are provided in 4.8. 
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4.8 

 

There are two coordinating paths between Y and Z. Their effects are 

 is redrawn 

For the coordinating paths between W and Z 
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For the six coordinating paths between Y and Z 

 

 

Coordinating paths traced in reverse directions are not distinguished if they 
impinge on the same points. The effect is the same regardless of the end point 
used to start tracing the path. 

4.9 

A coordinating path effect defines the covariance between two variables
resulting from a particular chain of causal linkages; for example, with

 we have , the correct expression for the covariance of YX a→ 2
XXYC σ= X

and Y. (It is not proved here, but 4.17 illustrates how any path analysis result can
be confirmed algebraically.) In more complicated problems, with multiple
coordinating paths between variables, covariances are defined by rule IV.5. 

IV.5   The covariance of two variables is the sum of the effects along all distinct
coordinating paths between the variables. 
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In other words, each coordinating path generates a certain amount of covariation 
between two variables—the amount indicated by the coordinating path effect. 
The total covariation is the sum of the covariations produced by all the different 
coordinating paths. The examples in 4.10 illustrate sundry ways in which 
covariation between two variables can accumulate. 

  

  

  

 
 

  

4.10 

The coordinating-path rules apply in systems with loops, once the loops have 
been reduced, as in 4.11. 
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4.11 

is redrawn 

Covariances among the variables can be read from the revised diagram, as 
in the following examples: 

Analysis of Correlations 

Because correlations are merely the covariances of standardized variables, they, 
too, can be read directly from a path diagram by using the above rules. 
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 becomes 

when all variables are standardized. 

4.12 

The standardized values of structural coefficients are called path coefficients 
and are represented as subscripted p’s. The standardized values of the input 
covariances are simply the correlations (ρ) among inputs. Thus to read 
correlations directly the symbols in a diagram are converted to these forms. In 
addition, in the standardized case correlation paths are represented as solid, 
double-headed arrows to maintain continuity with tradition in path analysis. 

However, the structural coefficients and the input covariances have to be 
modified because the values of these quantities depend on the scales of 
measurement. All quantities in the diagram must be converted to standardized 
form. 

The disturbance terms also have been represented as standardized variables in the 
modified diagram. This means that a variable’s disturbances have been translated 
into a separate hypothetical variable with a variance of 1.0—the same as every 
other system variable. Because a dependent variable is partly determined by other 
system variables the contribution of the disturbance term must be scaled down 
again before it can be summed with other sources. This is done by using new 
coefficients (pyu and pzu). It would be possible to leave the disturbances 
unstandardized as we have done up to now. However, coefficients like pyu and pzu 
provide an explicit indication of the degree to which a system variable is 
influenced by unspecified factors, and they are shown traditionally on a path 
diagram for standardized variables. 
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With both variables and system parameters in standardized form, expressions 
for correlations can be read directly from the diagram by using the coordinating-
path rules. A significant simplification in expressions occurs as a result of 
standardization. When a system diagram is defined in terms of path coefficients 
and used to define correlations, the variances of origins need not be shown in the 
defining expressions because all of these variances equal 1.0. 

 

 

4.13 

The correlation between w and z equals their covariance because all
variables are in standardized form. There are three coordinating paths
between w and z. 

Hence 

Standardized Versus Unstandardized 

Path coefficients simplify expressions for the decomposition of correlations. In 
addition, they give some basis for comparing the strength of different operators in 
a system. 

Any structural coefficient in a diagram indicates the units of change 
expected in a dependent variable, given a one-unit change in a source variable 
and all other variables held constant. Thus the numerical value of a structural 
coefficient is tied to the measurement units of both variables. If the 
measurement scale for either one is changed, the value of the coefficient must 
be changed as well, and if measurement scales are arbitrary, say that different 
scales are used in different studies, then the values of the coefficients 
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are also arbitrary: their values cannot be compared meaningfully across studies. 
Standardizing variables and coefficients on the basis of population variances may 
circumvent some of these difficulties by making the units of measurement less 
arbitrary. Every variable is measured on a scale whose units are statistically 
comparable to those of other scales in the sense that the variance on all variables 
is the same (1.0). The units of measurement on different variables have been 
“equalized,” and the relative strengths of different coefficients in the same system 
can be compared because each indicates how changes on one standardized scale 
are converted into changes on another. Moreover, the conversion to standardized 
units permits a comparison of different studies of the same population because 
the standardization procedure converts measurements on instruments calibrated 
differently to measurements in standard units that depend on the population’s 
distribution rather than on the particular instrument used. 

Yet standardization is subject to its own pitfalls which follow from the very 
factor that make it useful—its dependence on population distributions. Path 
coefficients do not provide a valid basis for structural comparisons of systems 
operating on populations with different distributions. When populations have 
different distributions on system variables, standardization within each 
population does not lead to equivalent measurement units across populations; 
therefore structural coefficients depending on these units are incomparable. This 
limitation extends to a single population studied over time if the population 
distributions are changing. In this case scales standardized on the basis of the 
variances at different times are incomparable, as are the structural coefficients 
based on these units. Standardization is to be avoided in comparative studies of 
different populations or in longitudinal studies of a changing population. 

ANALYZING STATISTICAL DIVERSITY 

A variance is a special case of covariance. It is the covariance of a variable with 
itself. This conceptualization allows expressions for variances to be read from 
system diagrams by almost the same rules already introduced. 

The covariance of a variable with itself can be obtained by representing the 
variable twice on the same diagram, duplicating its relations with all other 
variables exactly, as shown in 4.14. 
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4.14 DUPLICATION OF THE VARIABLE Z. 

becomes 

The covariance σZZ of Z and Z in the second diagram can be obtained as
follows: 

Hence 

Redrawing the diagram to define each variance would become burdensome, but 
the need can be eliminated by modifying the coordinating-path rules slightly 
when defining variances. 

IV.6   The variance of a variable X is the sum of all “contributing-path effects.” 
A contributing path effect is the same as a coordinating path effect defined under 
special conventions. 

(a)   A contributing path has X at both endpoints. 
 (b) The path may traverse a solid arrow twice, though it still may impinge 

on no variable (other than X) more than once. The path may traverse a 
dotted arrow only once. 

(c)   Contributing paths are distinct if their subscripts are different and if 
 the order of subscripts is different. 
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4.15 

There is one contributing path with Z at both end points (ZYZ), here the 
arrow c is traversed twice. The variance of Z is 

The path (ZYXYZ) is not a contributing path because it passes through Y 
twice. 

There are five contributing paths with Z at both end points: 

In defining variances, the last two effects are treated as distinct because 
the order of subscripts is different. 
The variance of Z is the sum of all five effects: 

In this diagram (ZXσYZ) and (ZYσXZ) are distinct contributing paths for 
defining σZ

2 because the order of variables is different. 

(XσX) and (YσY) are not contributing paths for X and Y because each 
traverses a dotted arrow twice. Thus the variances of the inputs X and Y 
are basic givens that cannot be analyzed further. 
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The contributing-path rule also defines variances in systems with loops if the
loops are represented in semireduced form, as shown in 4.16. 

 

 

 

 

4.16 

is redrawn 

Contributing paths for the variance of Y are 

Similar procedures lead to 

Substituting the last two expressions into the formula for σY
2 gives 
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PATH ANALYSIS AND ALGEBRAIC DERIVATIONS 

The rules that have been presented for obtaining covariances, variances, and 
correlations define the same expressions that are derivable by more traditional 
algebra, as exemplified in 4.17. 

4.17    MATHEMATICS CORRESPONDING TO PATH ANALYSIS 

A brief exercise in the algebra of expectations highlights the mathematical 
principles involved in the preceding rules. 

 

The goal is to define the covariance of Y and Z by employing algebra 
rather than graph analysis. First, we recall that 

This definition might become interesting if we could define expressions 
for Y and Z that could be substituted into the expectation term. Of course, 
such expressions can be read off the graph: 

 

Now multiplying these expressions for Y and Z is equivalent to 
multiplying the variables themselves; that is, 

 

The expectation of this expression defines the covariance of Y and Z 
according to the first formula above. 
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which reduces to 

All expectations in this formula are themselves variances or covariances 
and the expression can be written 

 

Many of the terms in the last expression involve the covariances of 
disturbances with explicit sources or among themselves. However, the 
original diagram indicates that all such covariances are zero and the terms 
involving them may be dropped from the expression. 

 

This is not quite the same expression we would obtain by path analysis 
because it contains terms with σWX and σVW that do not appear in the path 
analysis expression. If the algebra of expectations were applied again, it 
would be found that 

 

 

and if these terms were substituted into the preceding formula we would 
get 

which is the path analysis formula exactly. All variances and covariances 
of dependent variables in a system can be defined in a similar way. 

Nothing essential is lost in the graphical procedures, compared with the algebraic 
procedures, because the graphs themselves are mathematical representations of 
the system. 

GATING MECHANISMS 

In the foregoing discussions the input variances and covariances were taken as 
given and treated as statistical parameters that influence the variances 
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and covariances of other system variables. Yet it is possible to move still another 
step back and consider what it is that determines the values of these parameters. 
Necessarily, the focus changes from the system of interest to the forces operating 
in the system’s environment. 

Defining the sources of diversity and coordination in a set of inputs requires 
specifying a prior or encompassing system in which these variables are the 
outcomes. In fact, the original choice of one set of inputs rather than another may 
have been only a matter of convenience; for example, personality traits may be 
inputs to the system of occupational behavior, but personality traits are outcomes 
with respect to the socialization system and presumably the system definition 
could be extended by incorporating socialization variables. If consideration were 
extended to the sources of personality, we might have to include dozens of 
socialization variables and genetic factors as well. For the sake of simplicity we 
stop with personality, but the extension to socialization variables could be made. 

The issue is not always uncomplicated, however, because some social systems 
do not process all the cases that were processed by a prior system. A variety of 
gating mechanisms, ranging from self-selection to specific procedures of 
recruitment, selection, and rejection at the boundaries of the system, may 
intervene. Gating mechanisms act to reduce the diversity of entities admitted to 
the system when the gate consists of entering only those above (or below) some 
cutoff value on a selection variable. (Gates could also be designed to increase 
input variabilities, for example, by accepting only entities with extreme values.) 
Gating that restricts the range of variables affects covariances as well as 
variances, and it tends to reduce correlations among system variables. The 
essential idea here is described in 4.18. 

Gating on a number of different inputs simultaneously affects their statistical 
characteristics. Consequently the statistical characteristics of outcomes are 
influenced as well; for example, conjunctive gating (no admittance unless the 
entity meets cutoff criteria on several variables) can reduce both the diversity and 
the correlations among system inputs. Thus conjunctive gating may also reduce 
the variances and the correlations among outcomes. Disjunctive gating 
(admittance if any one criterion is met) would increase input variances while 
usually reducing their covariances, and the net effects on outcomes would depend 
on the system at hand. 

A gating mechanism partitions a population into two sets: one whose cases 
are subject to a particular subsystem of operations and the other whose 
members are unaffected. Alternatively, it might be said that the subsystem 
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4.18    REDUCED CORRELATION DUE TO RESTRICTION OF RANGE 

X and Y show a moderate degree of correlation when their full ranges are 
considered and almost no correlation when the range of both variables is 
restricted to values between 0 and + 2.0. 

applies to all members of the population, but the gating mechanism “turns off” 
the system’s operators for a selected subpopulation. This, in turn, is somewhat 
akin to the notion of a limiter—if a case is less than (or more than) a particular 
value on a variable, the subsequent structural coefficients have a value of zero. A 
gate nullifies all subsequent operations in the subsystem rather than just one 
following the gated variable, however. 

Both gates and limiters have pernicious consequences for path analyses. 
We cannot apply the model for the subsystem to the whole population 
because a gate (or a limiter) on an input causes the subsystem effects to be 
added to outcomes for only selected cases. Worse, the effects when they do 
occur are biased because inputs for the treated cases deviate systematically 
from values in the rest of the population. Thus the causal effects of these 
inputs are systematically deviant. Such biases can create extra variance and 
covariance among outcomes when the whole population is considered. These 
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inflated statistics would be quite uninterpretable from a formulation of linear 
effects in the subsystem. 

Gates therefore are convincing points at which to bound a system. The system 
operating after a gate works on a different, less inclusive population than the 
system that operates before the gate. Thus the system after the gate is naturally 
distinguished from its environment. Moreover, the peculiar variances and 
covariances produced by gates perhaps can be embraced in a causal analysis if 
the gating variables are among its inputs. The statistical characteristics of inputs 
are among the givens for an analysis, whether or not these characteristics were 
generated causally. 

In fact, special care is needed in extending path analyses beyond a gate, even 
supposing that attention is restricted properly to the subpopulation of cases that 
pass the gate. Such cases are affected by operators both before and after gating, 
but the selection process may ensure that some system disturbances are biased in 
ways that ordinarily would not be represented in a model; for example, if the 
members of an organization are selected for their conservatism, some will be 
included because their families raised them as conservatives. Others from liberal 
families will belong only because they have been subject to uniformly 
conservative influences in adulthood. This implies that the adult disturbances of 
the conservatism variable in this population will be negatively correlated with 
family determinants of conservatism. Analysis of paths from family socialization 
to the conservatism variable will be distorted unless this correlation is taken into 
account. 

GENERAL IMPLICATIONS 

Sources of Diversity 

Two populations with similar distributions on source variables but different 
variabilities of outcomes must be subject to different systems. If a system has no 
negative operators, then greater variability among outcomes implies stronger 
system operations and/or redundant operations. 

Generally speaking, the diversity of system outcomes may be increased by 
strengthening the effect of system operations; for example, if a society 
chooses to offer greater rewards to talent, greater status variability will emerge 
unless status differences are controlled by other mechanisms. Redundant 
operations have similar consequences. Suppose that economic interests 
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4.19   ORIGINAL SYSTEMS 

If we assume that σW
2 is the same in all three cases, the second system 

produces more diversity in Z than the first because its operators are larger 
in magnitude. The third produces still more diversity in Z because it has an 
extra path or “redundant” operation. 

REDUCED FORMS 

are transformed to political attitudes in part by the mass media. Adding new 
communication media to a social system would lead to greater political diversity 
in the population when no control mechanism is added simultaneously. 

Structural coefficients with negative values complicate these principles to the 
point that it is difficult to generalize. Understanding must be reached by studying 
the reduced-form expressions for the system at hand. Still, an important principle 
concerning diversity can be stated when negative operators are structured to form 
control mechanisms or loops with a negative return effect. Call a control 
mechanism “stronger” if the return effect of the corresponding loop has a larger 
negative value. Then diversity in a population is less to the extent that systems 
affecting the population have more stable and/or stronger stable controls. Adding 
controls to constrain deviancy is a workhorse idea in politics and lawmaking, but 
it is a principle of general importance in evolved as well as legislated systems. 
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4.20 

Suppose that X is talent, Y is accomplishments, Z is status, a represents the 
transformation of talent into accomplishments, c represents the 
transformation of accomplishments into status, and d represents 
administrative, social, and emotional distractions that convert high status 
into a reduction of accomplishments. 

If a and c happen to be 1.0 and d = 0 because there are no distractions, 
then 

If we now add a small distractive effect, d = -1/4, we obtain 

Thus the development of a negative feedback reduces variability in
statuses. 

Diversity of outcomes depends also on the statistical distributions of inputs. 
The more variable the inputs, the more diverse the outcomes, given a system 
consisting of positive operators and no coordination among the inputs; for 
example, assuming again that economic situations are transformed into political 
attitudes, we might expect that as a population increases in socioeconomic 
diversity it will display greater diversity in political attitudes. This same principle 
also applies to disturbances. The greater the variance of disturbances, the more 
diverse the system outcomes. 

The impact of coordination among inputs is more complex. If two populations 
are subject to identical systems of positive operators and the variances of inputs is 
the same in both populations but inputs in one population are more positively 
coordinated, then outcomes in that population will be more diverse. Suppose, for 
example, that two populations are subject to a system that transforms greater 
academic talent (T) and higher parental status (S) into more years of education 
(E): . Suppose, further, that the populations are identical in 
their variabilities of talent and parental statuses. Even with all these 
parallels one population will have greater variability in levels o

SET ←→

f 
education if it has a higher level of coordination between talent and 
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parental status. (This difference might occur if one society rewarded parents on 
the basis of certain genetic potentials which are transmitted to children and which 
condition children’s academic talent, whereas the other society awarded parental 
statuses on a different basis.) In the society with coordination there will be many 
instances of matching between a child’s talent and status background, and the two 
forces will often work together to produce outcomes of high or low education. In 
the society without coordination the matching will be random and less frequent, 
the two forces will often cancel each other, and the system will produce many 
examples of education at about the mean level. 

On the other hand, negative coordination among inputs in a system of positive 
operators produces even more efficient canceling of operations and yields still 
less output variability; for instance (continuing the above example), if a third 
population actually had negative coordination among inputs—the higher the 
parental status, the slighter the offspring’s talent—the two forces would cancel 
each other more efficiently, thus giving still less variability in educational levels. 

These points can be summarized as follows. In systems of positive operators 
outcome diversity can always be reduced by reducing the variability of inputs or 
by making the coordination among inputs less positive or more negative. When 
systems involve negative operators, the diversity of outcomes can be adjusted by 
manipulating input variances and covariances, but the necessary manipulations 
must be determined on an ad hoc basis. 

Coordination of Outcomes 

If two systems differ only in the strength of their operations (say, all operations in 
one system have twice the effect of those in the other), the system with stronger 
operators will produce greater coordination of outcomes, whether coordination is 
measured in terms of covariances or correlations. If a system consists only of 
positive operators, coordination of outcomes increases even if operators are 
strengthened by different amounts. If a system contains negative operators, then 
differential strengthening might cause some canceling of effects and the effects 
on outcome organization would have to be determined on an ad hoc basis. 

If two identical systems with all positive coefficients operate on populations 
differing only in the variances of input variables, the outcomes will be more 
organized in the population with greater diversity on inputs. As usual, 
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however, systems with negative structural coefficients have to be examined ad 
hoc to determine the exact impact of source variances. 

Increasing the amount of disturbance in an outcome decreases that variable’s 
correlation with other system variables that are not dependent on it—notably its 
source variables. At the same time, the change strengthens correlations among 
variables that are dependent on the one immediately affected, as illustrated in 
4.21. 

 

4.21 

I: Intelligence 
E: Educational attainment  
S: Occupational status 
P: Interest in political affairs 

Increasing the disturbances in educational attainment reduces the 
correlation between it and intelligence, but this same change would 
increase the correlation between occupational status and level of political 
interest. For example, college scholarships for all veterans or all members 
of an ethnic group in a society with few college graduates will reduce the 
correlation between intelligence and education in the population as a 
whole, but ultimately the increased variance in education will lead to more 
systematic diversity in statuses and in levels of political interest. Thereby 
it will be easier to predict from one of these to the other. 

A third factor affecting the correlation of system variables is the level of 
coordination among inputs. The greater the magnitude of correlations among 
the inputs, the greater the correlations among other variables in the system, at 
least if all the system operations are positive. If some of the input correlations 
and some of the system operations are negative, canceling of effects 
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may take place, and the impact of the input correlations has to be assessed on an 
ad hoc basis. 

Correlations in Loops 

Variables in a loop with a positive return effect will become more highly 
correlated if the loop operators are strengthened or if the variances of variables 
inputting into the loop are increased. More powerful operators or greater input 
variances, however, do not uniformly produce higher correlations among the 
variables in a loop with negative return effect. Indeed, correlation phenomena in 
control loops are highly peculiar, and misunderstandings about such phenomena 
easily can contribute to confusion in important scientific debates. 

To examine these phenomena a formula is needed that will specify the 
correlation among loop variables. The algebra complicates rapidly and therefore 
attention is restricted to a simple two-variable loop. 

 

4.22 

reduces to 

 

The variances of Y and Z and their covariance can be obtained by using 
path analysis rules. Substituting the resulting expressions into the formula 
for the correlation coefficient (3.17) gives 
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For heuristic purposes many of the parameters can be set at convenient 
values: 

The formula then reduces to 

 

The loop coefficients may be given the following convenient values that 
define a negative return effect: 

 
in which case the formula becomes 

 

The implications of this formula can be seen by setting the variances of W 
and X at different levels and solving for ρ: 

 
2.0 .0 +.42 
2.0 1.0 +.16 
2.0 2.0 .0 
1.0 2.0 -.16 

.0 2.0 -.42 

Clearly the correlation among variables is peculiarly sensitive to the 
variances of variables feeding into the loop. 

The examples in 4.22 illustrate that by modifying levels of diversity in the source 
variables of a control loop the correlations among loop variables can be 
adjusted to positive, negative, or zero values. Accordingly, the existence of a 
positive, negative, or zero correlation between the variables in a control loop by 
itself implies nothing about the nature of their causal relations. Considering the 
ubiquity of control mechanisms, this finding accents the need for caution in 
inferring causal structure from observed correlations. 
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An example illustrates how correlation phenomena in control loops might be 
contributing to scientific confusion. It is often argued that attitudes must not 
affect actual behavior because the correlation between the two is so small—
nearly zero in many studies. The negligible correlation actually could be masking 
a substantial effect of attitudes on behavior, if we allow for social control 
mechanisms that convert deviant behavior toward an object (too favorable or too 
unfavorable) into attitude change in the opposite direction. The general idea here 
is that a transgression is not forgiven until the actor expresses a changed attitude, 
implying that the same kind of deviancy will not occur again. A simplified 
representation of such a system is 

 
where a represents the transformation of favorable attitudes into favorable 
behavior, c represents the transformation of deviancy into inverted attitude 
change, and UA and UB are unspecified sources of variation in attitudes and 
behaviors. The a should be positive in value; c should be negative to represent the 
reversal in transforming deviant acts to attitude change. Thus the system 
corresponds to the type analyzed in 4.21. Consequently the correlation between 
attitudes and behaviors may take on nearly any value, and this correlation 
provides no basis for deciding whether attitudes do determine behavior. 

SOURCES AND ADDITIONAL READINGS 

Sewall Wright summarized his classic work on path analysis in “The Method of 
Path Coefficients,” Annals of Mathematical Statistics, 5 (1934), 161-215. Key 
articles by Wright and others which expand the scope of path analysis are 
collected conveniently in Hubert M. Blalock, Jr., Ed. Causal Models in the Social 
Sciences (Chicago: Aldine-Atherton, 1971). 

EXERCISES 

1.* The amount of convict aggression in felon prisons depends on characteristics 
of the inmate population and on characteristics of the prison as an 
 
* This exercise was developed from D. Ellis, H. Grasmick, and B. Gilman, “Violence in 
Prisons: A Sociological Analysis,” American Journal of Sociology, 80, No.1 (July 1974). 
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institution. Some possible relationships are reflected in the following path 
diagram: 

 

Variables are as follows: 

v:    proportion of inmates sentenced for violent crimes; 
i:     isolation—proportion of inmates without visitors for more than a year; 
y:    inmate youthfulness—proportion younger than 21 years; 
a:    rate of inmate aggressions that lead to official discipline. 

(a) Compute the expected correlations among the variables. 
(b) What proportion of the variance in a is explained by the other variables? 

Does this figure set a bound on the effectiveness of programs aimed at reducing a 
by changing i, v, or y? 

(c) What is the expected effect on a if a prison’s population is increased one 
standard unit in youthfulness, whereas the proportion of violent offenders is 
maintained without change? What is the expected result if the proportion of 
youths is increased without worrying about types of offense? 

(d) Using the three independent variables here, define the kind of prison that 
would generate the most disciplinary problems. What is the profile for a prison 
with low inmate aggressiveness? 

 
2.  Imagine a population in which there are variations in education, 
occupational prestige, and income but no relation among the variables; for 
example, suppose the variances on all variables are 1.0 and all three 
correlations are 0.0. Suppose now that social operators are created so that 
persons’ occupations are dependent on their educations and incomes are 
dependent on occupations. In this system education is an input variable and 
the original variations in occupation and income constitute unexplained 
disturbances. For heuristic purposes assume that the structural coefficient 
for each of the new operators is 1.0. 

(a) What are the variances and covariances of the variables after the new social 
system has been established? What are the correlations among the variables? 
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(b) What are the values of the system’s (standardized) path coefficients in the 
final population? Do these path coefficients suggest anything different from the 
original structural coefficients? (Note that the superimposed operators change the 
character of the population by increasing variance in occupational prestige and 
income.) 

(c) Social stratification exists in a population when status differences are 
ordered such that each individual person’s (or family’s) set of statuses is 
internally consistent. Judging from this exercise, what are some requisites for the 
development of stratification? Which statuses in a social system will have the 
most inequality? 
3.  Assume that the social system in exercise 2 includes an additional operator 
such that a given level of income generates mobility to an occupation of 
corresponding prestige (e.g., such a relation would exist if jobs could be bought). 
Assume that the structural coefficient for this operator is .5 (compared with the 
values of 1.0 for the other two operators). Again calculate the variances, 
covariances, and correlations of the status variables after the new system is 
imposed. What effect has the amplifying loop on the variances of variables in the 
loop? On the correlation of loop variables? 
4.  In the diagram that follows think of  as a set of standardized scores 
representing persons’ true attitudes toward abortion and x

x̂
1 and x2 as the 

standardized scores obtained from two questionnaire measures of this attitude. 
Arrows from true scores to the indicators mean that persons’ true attitudes 
determine their responses on particular questionnaire measures. However, 
questionnaire responses depend on a variety of other factors—moods, interviewer 
effects, distractions, and misunderstandings. All such sources of 
measurement error are viewed together as disturbances d1 and d2. Variable 

 represents persons’ true levels of knowledge about abortion. Again, the 
variable is standardized and is a source of two questionnaire measures o
ŷ

f 
knowledge, y1 and y2. These indicators are presumed to be subject to 
measurement errors e1 and e2. Coefficients on the arrows indicate 
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that somehow we know the correlation between the true scores as well as the 
relations between the true scores and their indicators. 

yxρ ˆˆ

(a) What is the expected correlation between the two indicators of ? 
Between the two indicators of ? Why is the correlation between two measures 
of the same variable not 1.00? 

x̂
ŷ

(b) What are the correlations between indicators of x and indicators of y? If 
you knew the values of these correlations but not the value of , what mighyxρ ˆˆ t 
you conclude about the relations between attitudes and information in this case? 

(c) What proportion of the variance in each indicator is due to errors of 
measurement? If the errors are viewed as standardized, what are the values of the 
p coefficients on their arrows? 

(d)  The coefficients on the arrows from true scores to indicators can be called 
validity coefficients. Suppose you know only the correlation between two 
indicators ρx(1)y(1) and the validity coefficients for x1 and y1. Use these figures to 
estimate the correlation between the true scores  and . x̂ ŷ

 
5. In exercise 4 it was assumed that the measurement errors for different 
indicators were uncorrelated. If, however, all four questions are presented during 
the same interview, that may not be the case. Continue with the model specified 
in exercise 4 but suppose that the errors in each indicator correlate .30 with the 
errors for each of the other indicators. 

(a) Use the parameters from exercise 4 and these additional figures to 
reestimate the correlations among all indicators. What is the overall trend in 
results compared with those obtained in exercise 4? Would this be the usual 
effect of correlated errors? 

(b)  Again apply the procedure in exercise 4d to estimate the true correlation 
. Now use the validity coefficients for xyxρ ˆˆ 1 and y1 and the “observed” 

correlation ρx(1)y(1) obtained in part (a) of this exercise. Might this lead to 
erroneous conclusions? 

(c) Suppose that x1 represents scores on an opinion question in which intensity 
of disagreement or agreement is coded in just five levels—1.0 through 5.0. There 
is reason to suspect that the errors d1 for this measure might be correlated 
negatively with the true attitudes x. Explain why. 

 
6. A system was presented in 4.20 in which talent is transformed into 
accomplishments (operator a) and accomplishments lead to status (operator c). It 
also was allowed that a control operator (d) may evolve such that more status 
produces fewer accomplishments. The statistical implications of these 
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specifications were worked out when structural coefficients a, c, and d were 
assigned arbitrary values of 1.0, 1.0, and -.25, respectively. Now suppose that a 
and d remain the same but the system’s reward mechanism c is doubled in 
strength so that the coefficient has a value of 2.0. What is the impact of the 
greater rewards on status variability in a system in which the control mechanism 
has not yet developed (i.e., when d = 0)? What is the impact on status variability 
in a system that includes the control mechanism (d = -.25)? From these results 
interpret the functions and dysfunctions of the control mechanism. 
7.* A heritability coefficient indicates the proportion of variance on an observable 
trait that can be explained by variations in genetic constitution. Ordinarily, 
genetic variables cannot be measured directly; therefore a heritability coefficient 
must be estimated indirectly. The following diagram shows the basic logic in 
many heritability studies. 

 

Variables subscripted with 1 refer to one member of a pair of identical twins.
Variables subscripted with 2 apply to the other member. Thus the analysis treats a
pair of identical twins as the basic unit of analysis. Variable g represents a
person’s value on the relevant genetic variable. (Actually almost any trait
depends on numerous genetic variables and g is really an aggregate variable
comparable to a disturbance term.) Variable t stands for a person’s value on the
trait of interest (e.g., height or intelligence). Variable e represents the nongenetic,
or environmental, sources of variation in t. Note that gl and g2 are shown as
correlating 1.0. Analyses are limited purposely to identical twins so that this is
known to be true. Identical twins have exactly the same genotypes. Also note that

h is shown as the path coefficient from g to t. This must be the case if
heritability is the proportion of trait variance genetically determined (see exercise
1b). 
* This exercise has been drawn from materials reviewed in D. Heise, Personality:
Biosocial Bases (Chicago: Rand McNally, 1973). 



147 
 
Exercises 

 (a)  Given the above model, what observable statistic provides a direct 
estimate of the heritability h of a trait? 
 (b)  Why do heritability researchers prefer to study twins who have been raised 
apart? 

(c)  The heritability of intelligence sometimes is cited as about .80. Does this 
mean that for all practical purposes environments cannot be manipulated to 
increase intelligence? 
 (d)  Suppose trait t is measured with error. What would the expected effect be 
on estimates of heritability? 

(e) Suppose a sociocultural system is gradually becoming more heterogeneous 
in the sense that its environmental diversity is increasing. Will heritabilities of 
most traits increase, decrease, or stay the same? 

 
8. Suppose that a researcher interested in aesthetic values obtains data from all 
students registered in the humanities in a large state university. He finds that a 
precise measure of aesthetic values correlates only negligibly in this population 
with parental statuses and numerous indicators of childhood cultural experiences. 
Can he conclude that parental statuses and childhood cultural experiences do not 
affect aesthetic values? 
 
9. Suppose a valid test of musical interest has been included in a battery of tests 
widely administered to high school students for a number of years. A researcher 
makes up a study population of people who took the test years ago, half of whom 
are now professional musicians and half randomly selected. He finds a strong 
correlation between the test scores and a measure of present musical skills. He 
then replicates the study on a population made up only of laymen and finds a 
much lower correlation. What is a likely explanation for this pattern of findings? 



 

5 IDENTIFICATION 
AND ESTIMATION 

The full power of causal analysis for explanation, prediction, and interdiction
cannot be attained until the structural parameters of a causal system are estimated
numerically. Sometimes, in engineering, operators are designed to have specific
quantitative effects, in which case numerical estimation of coefficients poses no
distinct problem. But social systems are often evolved rather than designed, and
the social laws and basic constants underlying system operations typically are
unknown. So the parameters of a social system must be estimated from empirical
observations on the system rather than deductively from available knowledge. 

The principles of path analysis presented in Chapter 4 provide a lead into an
important set of procedures for empirical estimation of system parameters. The
basic logic of these least-squares procedures is elaborated here with reference to
the simple system defined in 5.1. 

5.1 The theoretical system consists only of X and Y with X affecting Y via an
operator whose linear effect is a. The covariance term indicates that X may
be coordinated with other unspecified determinants of Y within the
population of interest. 

First, the values of X and Y are measured for all cases that have been subjected to 
the system operation. From these measurements the following statistics are 
calculated: variance of X (σX

2), variance of Y (σY
2), and the covariance of X and Y 

(σXY). 
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These calculations directly provide one parameter needed for analyzing the 
distributional outcomes of this simple system σX

2. If there were additional 
specified sources, their variances and covariances would also be known at this 
point. 

Path analysis can be used to express the values of the remaining observed 
statistics in terms of basic system and population parameters. 

 

The first equation can be solved for a, giving a formula that expresses the value 
of a in terms of population statistics: 

 

Two of the quantities on the right (σXY and σX
2) are known because their values 

have been calculated directly from data. The value of the third quantity σXU(Y), 
however, is not directly measurable, and because this is an unknown the formula 
does not uniquely identify the value of a. 

Similarly, the second equation, with the third, can be solved to provide an 
equation for the variance of the disturbance variable σU(Y)

2. 

2σ
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This equation also contains the unknown quantity σXU(Y) and so does not uniquely 
identify σU(Y)

2. 
Suppose a restrictive condition is stated. These formulas may be applied only 

when X is uncoordinated with any disturbance of Y. Then the unknown quantity 
in these formulas has a “known” value, σXU(Y) = 0, and the formulas simplify to 
the following: 

 
Thus in restricted situations (i.e., when X and UY are uncoordinated) both

coefficient a and the disturbance variance σU(Y)
2 are uniquely identified in terms

of observable statistical quantities. Consequently the formulas might be used to
estimate these parameters from empirical statistics. 
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This example spotlights a characteristic difficulty in least-squares estimations. 
The path analysis yields two equations that can be solved for unknown 
parameters, but these equations contain three unknowns. Thus a unique solution 
for any of the unknowns is not possible until the value of one unknown is 
determined on a nonempirical basis. The general predicament of no unique 
solution is known as the identification problem. Systems that yield fewer path 
analytic equations than there are unknowns are said to be underidentified. 

REGRESSION ANALYSIS AND IDENTIFICATION 

A second example illustrates other features of the least-squares logic. Though the 
system considered is only slightly more complex, the algebra complicates 
rapidly, and two simplifying assumptions are made beforehand. First, it is 
assumed that all variables are measured on scales with standardized units. This is 
not a restrictive assumption (essentially the same results could be obtained 
without it). However, it has the heuristic value of making all variances equal to 
1.0 and the variances need not be represented explicitly in formulas. In addition, 
it is assumed that disturbances of a variable are uncorrelated with the variable’s 
specified sources. This is a restrictive assumption in that the results apply only in 
situations in which the assumption is true. However, this particular restriction is 
exactly what is needed to develop the least-squares logic further. 

The system to be considered is presented in 5.2. 

 

5.2    All variables are measured in standard units and the disturbances are 
 uncorrelated with x or with one another. 

Again measurements are made on each variable over the cases of interest 
and the key statistics are calculated. Because variables are standardized, the 
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variances of all variables are equal to 1.0 and the covariances are the same as the 
correlations. Path analysis specifies the correlations as 

 

 

and solving for the unknown p’s yields the following formulas: 

These formulas, however, are exactly those that define standardized partial 
regression coefficients (see 3.32 and 3.33). If we regress y on x and z on x and y 
together, the results of the regressions estimate the system operators: 

 

Path analysis of variances can be conducted as usual if we remember that all
variances have a value of 1.0. 

 

 

By using a number of the preceding results in substitutions the following 
formulas can be derived: 

Here the quantities in parentheses are precisely the expressions for coefficients 
of determination (see 3.34). Path coefficients from disturbances can also be 
obtained directly from the results of regression analyses: 

 

A general principle has been illustrated. Under restricted conditions a 
system’s parameters can be estimated by conducting a series of regression 
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analyses. This parallelism between system estimation and regression analysis
holds only when source variables and disturbances are uncorrelated. Regression
procedures are mathematically defined to eliminate correlation between predictor
variables and the residuals from predictions. If source variables and disturbances
actually are correlated, regression coefficients do not correspond to system
parameters. 

The Need for Theory 

The examples given serve to emphasize that empirical observations can lead to 
inferences about the nature of a system only in the context of theoretical 
assumptions. A formula can be used to estimate a parameter if the formula 
uniquely identifies that parameter in terms of measurable statistics. In general 
this is true only if some quantities are eliminated from the formula on a 
theoretical basis; for example, it must be known that a source variable is not 
affected by the dependent variable before a causal interpretation is given to a 
regression of the one on the other. Further, it must be known that any spurious 
coordination between two variables is absent or controlled before a regression 
coefficient can be interpreted as a valid estimate of a causal effect. Various 
estimation methods mentioned later offer some variety in the choice of 
theoretical assumptions needed for system identification, but some kind of 
theoretical information is needed before data can be interpreted. Mere 
observations of a system are not enough to identify it, and the identification 
problem can never be solved merely by collecting observations on more cases. 
Underidentification is a theoretical rather than a statistical problem. 

It is presumed throughout most of this chapter that variances and covariances 
are calculated on the basis of all cases in a population in order to bypass 
complications created by probabilistic inference from samples. In practice, 
parameter estimates can be calculated from observations on samples—and this 
economy is exploited routinely in social research. When working with samples, 
an increase in the sample size generally does improve the accuracy of 
estimations. (Problems of sampling and statistical inference are discussed briefly 
at the end of the chapter. These matters are covered at length in statistical and 
econometric textbooks.) Nevertheless, an estimation is not possible at all unless a 
formula exists that provides a unique mathematical identification of the desired 
parameter. Such formulas are obtained only by making assumptions of a 
theoretical nature. 
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RECURSIVE SYSTEMS 

The following definition presents a concept that is convenient for a more detailed 
development of estimation methods by ordinary regression analyses. 

V.l   A relation between two variables is called recursive if it is linear, if the two
variables are not in a loop, and if the source variable is uncoordinated with the
disturbances of the dependent variable. If all the causal relations in a system are
recursive, the entire system is said to be recursive. 

“Recursive” is simply a name for a kind of causal relation in which parameters 
are identified in terms of ordinary regression formulas. Because of the ease with 
which the parameters can be estimated, recursive relations do warrant some 
special attention. 

The matter of linearity was discussed in Chapter 1 and is not considered 
further here. Ascertaining that two variables are not in a loop amounts to an 
inference that no causal effect exists from one variable to the other. The bases for 
such causal inferences were discussed in Chapter 1 and need not be repeated. 
Discussion here is focused only on the matter of coordination between sources 
and disturbances. 

Viewed from a theoretic perspective, three conditions outlined in 5.3 can 
create correlations between a source variable and the disturbances of a dependent 
variable. 

5.3   A linear relation from X to Y is nonrecursive if the disturbances of the
dependent variable are coordinated with the specified source variable; that
is, 

 

This coordination can develop in three ways: 

1. A mutual source of X and Y has not been considered explicitly: it exists 
implicitly in the UY aggregate. This relation can be made recursive 
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by elaborating the specification of the system to include the mutual source 
explicitly; for example, 

An implicit variable creates nonrecursiveness only if it determines both 
source and dependent variable. In particular, deleting an intervening 
variable in a recursive system does not create nonrecursiveness in the 
reduced system; for example, both of the following are recursive systems: 

 
can be collapsed to 

2. Some variable in the UY aggregate serves jointly with X in a gating 
mechanism, thereby creating artificial coordination between X and the other 
variable, say Z, in the population of interest. In this situation recursiveness 
could be established by removing Z from the disturbance aggregate and 
considering it explicitly because coordination among specified sources does 
not interfere with recursiveness. 

 

Gating directly on variable Y generates a negative correlation between X 
and UY’, as pointed out in Chapter 4. This problem could be eliminated by 
examining the full population (both gated and ungated cases). 
3. If X and Y are involved together in a loop in which Y is directly or 
indirectly a source for X as well as dependent on X, the disturbances of Y 
must be correlated with the values of X. 
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X and UY are coordinated by the path (UYYX). 
Here the coordination between X and UY is intrinsic and cannot be 
eliminated by further specification of the system. 

Thus the relation between two variables can be treated as recursive only when (a) 
causality is unidirectional so that one variable is known not to affect the other 
and there is no ambiguity about which is the source and which is dependent; (b) 
any third variable that is a source for both is included explicitly in analyses; (c) 
the source variable (or one of its sources) is not involved in a gating mechanism 
along with any unspecified variable that affects the dependent variable and the 
population of interest has not been gated on the dependent variable. 

Ordinary Least Squares (OLS) 

The method of ordinary least squares, described in the next rule, gives unbiased 
parameter estimates only if the relations between a dependent variable and all its 
sources are recursive. 

V.2   If the relations between a system variable and its sources are all recursive, 
the structural coefficients for operators determining the variable may be estimated 
directly by regression analysis and the disturbance variance by the variance of the 
regression residuals. The appropriate regression is defined as follows: 

(a)   Write out the structural equation expressing the value of the dependent 
variable as a function of its immediate sources, the structural 
coefficients, and the disturbance term, for example Z = aX + dY + UZ. 

(b)   This equation defines the multiple regression model—the dependent 
 variable (Z) is regressed on all of its specified sources (X, Y). 
(c)   The resulting partial regression coefficients identify the structural  
 coefficients; for example, 
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and the residual variance, defined by the regression’s multiple 
correlation coefficient, identifies the disturbance variance; for example, 

 
The ideas involved in ordinary least squares are elaborated in 5.4. 

 

 

 

5.4   BASIC PARADIGM FOR ORDINARY LEAST SQUARES 

Restrictions: Y’s relations with all of its sources are recursive. 
Theoretically, there is no restriction on the number of X variables or on 
their interrelations. 
Procedure. Regress Y on X1, X2, and X3. The partial regression coefficients 
identify the structural coefficients: 

The variance of the disturbance is identified by the multiple correlation 
coefficient and the variance of Y: 

In a recursive system this paradigm may be applied repeatedly to identify and 
estimate all unknown parameters, as illustrated in 5.5. 
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5.5   Here there are no loops and the U’s are uncorrelated with V or W or among
themselves. Hence ordinary least squares may be used to estimate
parameters. 

The procedure involves running the following separate regressions for each
dependent variable: 

 

defines the regression of X on V  to identify aXY and σU(X)
 2. 

 

a 

defines the regression of Y on V, W, and X to identify aYV, aYW, aYX, and 
σU(Y)

2. Note that the causal relationship between V and X is merely 
summarized by a covariance term (and implicitly by the variances of V and 
X), which indicate that the kind of relation existing between V and X is of 
no consequence in this step; that is, the regression procedure ignores the 
details of causal relationships among prior variables and takes into account 
the net effects of these processes reflected in the covariances and variances 
of the variables. 
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This diagram defines the regression of Z on X and Y to identify aZX, aZY, and 
σU(Z)

 2. Again X and Y are treated as direct sources of Z. Their detailed 
causal relationships are ignored and treated in summary form by the 
observed covariance σXY and also, implicitly, by the observed variances σX

2 
and σY

2. 

 

Essentially the ordinary least squares method involves breaking a diagram down 
into a set of subdiagrams, each suitable for defining the variance of a single 
dependent variable in terms of the variances and covariances of its sources. Only 
the direct sources of the dependent variable are included in a subdiagram and 
relations among these sources are summarized by covariance terms. 

Some illustrative situations in which ordinary least squares is not applicable 
are given in 5.6. 

5.6   Instances in which ordinary least squares should not be used: 

The disturbances of Y are coordinated with the specified source X. In this 
case the regression coefficient does not estimate a. Rather 
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Here the disturbances themselves are coordinated. Although aXW can be 
estimated by ordinary least squares, aYX is not uniquely identified. The 
appropriate subdiagram must reflect the correlation between X and UY that 
exists via the disturbances of X: 

This, however, is the same diagram considered above. 

 

 

Both variables are involved in a loop and the regression of Y on X does not 
identify aYX. Rather the regression coefficient represents another quantity 
of no particular interest: 

 

Loop coefficients can never be estimated accurately by using ordinary least 
squares because loop parameters are not properly identified by simple regression 
statistics. It may be possible, however, to identify parts of a loop system by using 
OLS. In particular, the independent variables in a regression can be in loops 
without biasing results because a loop does not affect open paths leading away 
from the loop variables (see the “touching” rule—II.15). 

5.7 

Ordinary least squares cannot be used to estimate aYX or aXY but it can 
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be used to estimate the coefficients leading to Z because the subdiagram 
below accurately displays the information relevant to Z: 

 

In other words, X and Y are recursive sources with respect to Z even though 
they are nonrecursive sources with respect to each other. 

NONRECURSIVE SYSTEMS 

Coefficients in nonrecursive relations can also be identified and estimated 
provided that the specification of the system includes some variables with certain 
restricted features. These “instrumental variables” (defined in the following rule) 
may be part of the original specification of the system or they may be added to 
the system specification merely as a matter of research design. Regardless of 
whether instrumental variables are considered practically relevant, their 
conceptualization at the time of theorizing is a matter of utmost importance. The 
structural coefficients in a nonrecursive system can be estimated from cross-
sectional data only if adequate instruments are available. 

Instrumental Variables 

V.3 A. A variable, X, is an instrument for Y in the nonrecursive 
relationshipY if Z→

(a)   X has no direct effect on Z; 
(b)   X does affect Y, either directly or through an intervening variable that 

has no direct effect on Z; 
(c) neither Y nor Z has a direct or indirect effect on X; 
(d) no unspecified factor jointly affects X and Z and, in general, X is 

uncoordinated with the disturbances of Z. 



 161 Nonrecursive Systems 

B. A variable, X’, that is merely correlated with Y also is an instrument for the 
relation providing it fulfills conditions (a), (c), and (d) above. ZY →

If X is an instrument for the relation Y , then the relation between X and Z is 
like a recursive relation in two ways; that is, Z has no effect on X and X has no 
coordination with the unspecified variables affecting Z (Z’s disturbances). On the 
other hand, an instrumental source contrasts with an ordinary recursive source in 
that it definitely must not have a direct effect on Z—it must affect Z only through 
specified intervening variables and, in particular, through the variable Y. 

Z→

An instrument, X, as defined by section A of the rule, must be a source for 
variable Y, but the X-Y relation need not be fully recursive because X may be 
correlated with the disturbances of Y. Section B extends the concept of instrument 
to include any variable that is merely correlated with Y, provided that the 
correlation is not due to a causal effect from Y and that the variable meets 
conditions (a), (c), and (d). 

Examples of instrumental variables are presented in 5.8. 

5.8    EXAMPLES OF INSTRUMENTAL VARIABLES. In each case X is a valid  
 instrument relative to the relation Y-Z. 

 

X may be correlated with UY but not UZ.  UY and UZ may be correlated and 
Y and Z may be variables in a loop. 
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X may be correlated with other specified source variables affecting either Y 
or Z. 

 

X may affect Z through intervening variables other than Y if they are 
included explicitly in the analyses. 

X is an instrument if its relations with Y and Z are mediated by the primary
instrument W and if its disturbances are uncorrelated with Z. 

 

Further understanding of instrumental variables can be obtained by examining 
some examples in which a variable fails to meet the defining conditions. 

5.9   In the following examples X is not an instrument for the relation Y : Z→

because Y affects X 
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because X affects Z directly 

 

because Z affects X 

 

because X is correlated with UZ 

 

because X is correlated with UZ 

 

A variable may serve as an instrument for more than one relationship, as 
illustrated in the examples in 5.10. 

5.10  EXAMPLES OF MULTIPLE-PURPOSE INSTRUMENTS 

X is an instrument for V→W and for Y→Z. 
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X is an instrument for Y→V and for Y→W. 

 

X is an instrument for Y→Z; it is also an instrument for Z→V. 

 

 

X is an instrument for Y→Z and it would be an instrument for V→Y but no 
instrument is needed to deal with that recursive relationship. 

X is an instrument for Y→Z; it is also an instrument for Z→V. 

 

X is an instrument for Y→V and for Y→W; also for V→Z and W→Z. 
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X is an instrument for Y→Z; it is also an instrument for Z→V. 

 

X is an instrument for Y→Z, for Z→V, and for V→W. 

 

 

Instruments and Identification 

Instrumental variables provide a net gain in the information for dealing with 
identification problems. An instrument brings some additional unknowns into an 
analysis. It also yields additional variances and covariances that can be path 
analyzed for supplementary identification equations. 

5.11 

Without the instrument X there are just two path analysis equations 
available for identifying the unknowns of the system. 

(1) 
(2) 
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Because these two equations contain three unobservables, the system is 
underidentified. Adding the instrument adds one unknown quantity a, but 
it also adds three new observables and three new path analysis equations. 

(3) 
(4) 
(5) 

The following identification formulas can be obtained: 

 

[from (3)] (6) 

[from (4) and (6)] (7) 

[from (1) and (7)] (8) 

[from (5) and (6)] (9) 

(10) 

Thus the instrument adds enough equations to identify all unknowns. If the 
instrument X were correlated with UY, it would still provide enough 
information to identify key parameters in the original nonrecursive 
relation, but the parameters relating the instrument to the other variables 
would not be identified uniquely; for example, adding a nonzero 
covariance between X and UY yields the following covariance and variance 
equations: 

 

These equations give rise to the same identification formulas for c, 
σU(Y)U(Z), and σU(Z)

2. However, coefficient a and the statistical 
parameters σU(Y)

2 and σXU(Y) cannot be identified uniquely. Adding an 
instrument to an analysis can increase information enough to identify 
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important system parameters even when it is impossible to identify the 
parameters relating the instrument to the system. 

 
 

 

 

The last part of this example illustrates an important point. The coefficient linking 
a variable to its instrument cannot be identified accurately unless the relation 
between the two is recursive; that is, an instrument need not be recursively 
related to its entry variable to be useful, but its effect on the entry variable can be 
assessed correctly only if the relation between the two is recursive. 

A net gain in information also results when an instrument is available for one 
of the relations in a loop. 

5.12 

can be reduced to 

The following covariance formulas can then be obtained from the reduced 
diagram: 

Dividing the second by the first gives an identification formula for 
coefficient c: 

It is interesting to note that the same result could be obtained by 
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regressing Y on X, regressing Z on X, and then writing the final 
identification formula in terms of the regression coefficients that result: 

 

The generalized version of this technique is an estimation method called 
indirect least squares. 

The last equation in 5.12 suggests that if loop variables are regressed on 
instrumental variables loop coefficients can be identified from the regression 
coefficients. This is the key idea in the method of indirect least squares. This 
estimation method, however, is not elaborated here because it has a basic 
practical weakness. If there is more than one instrument for a given relationship, 
several different estimates for a structural coefficient may be obtained with 
indirect least squares, but there is no set procedure that will combine them into a 
single best estimate. 

Another manner of using instrumental variables leads to a general method of 
estimating unknowns in nonrecursive relations, even when a relationship is 
overidentified by more instruments than are needed for a single estimate of a 
particular coefficient. 

Two-Stage Least Squares (2SLS) 

A general method of estimating parameters in nonrecursive relations from cross-
sectional data was developed in the 1950s by the econometrician Henry Theil. 
This method—two-stage least squares—is applicable when the disturbances of 
system variables are correlated, it is appropriate for estimating coefficients in 
loops, and it combines information from multiple instruments efficiently to 
obtain a single estimate of each structural coefficient. 

In effect, the two-stage least squares method involves using instrumental 
variables in a first round of multiple regression analyses to define new system 
variables that are free of confounding effects from disturbances. These new 
variables are employed in a final round of regression analyses to estimate 
structural coefficients and the variances and covariances of disturbances. A 
graphical interpretation of two-stage least squares is provided later. First though, 
we shall consider the basic steps that can be followed to implement the 
procedure. 
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V.4  Two-Stage Least Squares (2SLS) Estimation. If some of the relations 
between a system variable and its sources are nonrecursive but adequate 
instruments exist for them, the structural coefficients for operators determining 
the variable may be estimated: 

(a)   Write out a structural equation that expresses the value of the dependent 
variable as a function of its immediate sources, the structural coefficients 
and the disturbance term. 

(b)   Make up a list of predetermined variables consisting of all recursive 
sources in the equation and all instruments for the nonrecursive sources. 

(c)   Regress each of the nonrecursive sources on all the predetermined 
variables to obtain a set of regression equations for “predicting” values 
on each nonrecursive source from values on the predetermined 
variables. 

(d)   Return to the original set of observations and for each case calculate the 
predicted value for each nonrecursive source, using the formulas 
obtained in step (c). This procedure generates one new variable, called a 
“decontaminated source,” for each of the original nonrecursive source 
variables. 

(e)    Return to the equation defined in step (a) and estimate its coefficients 
by ordinary least squares, substituting the decontaminated source 
variables for the original nonrecursive sources. 

5.13   PROBLEM: Estimate a, c, and d from observations on T, V, W, X, Y, Z. 

 

Ordinary least squares should not be used here because X and W are 
nonrecursive sources for Z: that is, they are coordinated with the 
disturbances in Z. Hence we turn to the 2SLS method. 
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STEP 1. Write out the structural equation for Z. 

 

 

 

STEP 2. Make up the list of predetermined variables relative to this 
equation. This list includes Y because Y is a recursive source for Z. It also 
includes T and V because they are instruments for the two nonrecursive 
sources of Z. 

STEP 3. Regress the nonrecursive sources on all the predetermined 
variables. 

STEP 4. Return to the original data and generate the decontaminated 
variables W and  by using the following formulas: ˆ X̂

STEP 5. Revise the equation in step 1 by substituting the decontaminated
variables for the original sources 

and estimate the structural coefficients by using ordinary least squares. 

The disturbance variance σU(Z)
2 is not estimated directly by the variance of 

residuals in the final regression but rather by a fairly complex transformation of 
the residual variance. The calculating formulas are not presented here. 

 

5.14    2SLS ESTIMATION OF COEFFICIENTS IN A LOOP 

 



 171 Nonrecursive Systems 

 

Relations Y→Z and Z→Y are nonrecursive; W and X, however, are 
instruments for these relations. 

Step 1. The equations for Y and Z are 

 

STEP 2. W is a recursive source in the first equation and an instrument 
with respect to the second equation. Similarly, X is a recursive source in 
the second equation and an instrument for the first. Thus W and X 
constitute the set of predetermined variables for both equations. 

STEP 3. Conduct the multiple regressions of Y on W and X and of Z on W 
and X to obtain the regression formulas 

STEP 4. For each original observation calculate the predicted values of Y 
and Z, using the regression coefficients obtained in Step 3. This defines 
two new variables: 

 

STEP 5. Use ordinary least squares to estimate the operators in each 
structural equation. Always regress onto Y  or  instead of Y or Z. Thus 
to estimate the coefficients in the structural equation 

ˆ Ẑ

 
conduct the following regression: 

 

The resulting coefficients are unbiased estimates of the corresponding 
operator coefficients; that is, 

a is estimated by 
d is estimated by 

 
Similarly, to estimate the coefficients in 

regress Z on X and Y ; then ˆ

 
e is estimated as 
c is estimated as 
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Calculating Procedures 

The procedure for 2SLS estimation defined by Rule V.4 requires two separate 
sets of regression analyses plus an intermediate step in which we return to the 
original data to create decontaminated variables. Actually the intermediate step 
can be accomplished without returning to the original observations by using 
procedures outlined in exercise 6 of this chapter. 

Mathematical formulas that define 2SLS as a single-step analytic procedure 
are available. The matrix equations are much too complex to present here and too 
complex to be used for manual calculations. Many computer installations 
maintain a 2SLS program that incorporates the mathematical solution and can be 
called routinely to handle various problems, however. 

The use of 2SLS computer programs is recommended in terms of economy 
and greater numerical accuracy. In addition, these programs ordinarily calculate 
statistics for testing the statistical significance of coefficient estimates when data 
consist of observations on a sample rather than of observations on a whole 
population. Moreover, computer programs make routine provision of 2SLS 
estimates of the variances and covariances of disturbances. Formulas for 
calculating these quantities have not been given here because of their complexity. 

Graphical Interpretation of 2SLS 

A system graph can be transformed to correspond to the procedures in a two-
stage least squares analysis. Such graphical manipulations are helpful toward an 
understanding of the basic logic of this method. 

5.15    PROBLEM: Obtain a single unbiased estimate of coefficient c, given the 
 two instruments W and X. 
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The values of Y that are predictable just from the instruments W and X 
could be used to define a composite instrumental variable Y , and this 
variable can be entered explicitly on the diagram. 

ˆ

 

Ŷ  is defined by the multiple regression of Y on W and X, and values of 
for each observed case can be obtained by applying the regression 

formula to values of W and Y. Variables Y and Z in the above diagram can 
now be reduced onto Y , U

Ŷ

ˆ
Y and UZ (see rule II.17). 

In this transformed diagram Y is revealed as a determinant of Z that is 
uncorrelated with any disturbance of Z. Hence ordinary least squares may 
be applied. Z is regressed on Y and c is estimated by the regression 
coefficient . 

ˆ

ˆ

YZb ˆ

 

The key idea clarified by the graphical approach is that the values of Y represenˆ t 
an extraction of real variations in Y that are in no way contaminated by, or 
correlated with, the disturbances of Z. Hence the relation between Z and this 
“purified” Y is recursive and coefficient c can be estimated by ordinary least 
squares. 

This example with two instrumental variables for the relation Y→Z 
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is of special interest because the Y→Z relation is overidentified. From the original 
graph seven equations can be written to express the values of observable 
covariances and variances in terms of the unknowns and the observable variances 
of W and X. There are only six unknowns, however—three structural coefficients 
and three disturbance parameters. If the seven equations were solved for the six 
unknowns, two different estimating formulas would be obtained for coefficient c. 
It is unlikely that these two formulas would always give exactly the same result if 
we were working with real data, and there would be the problem of merging the 
different estimates of c into a single best value. Two-stage least squares solves 
the overidentification problem by creating a single composite instrumental 
variable  that optimally combines the variance extracted from Y using each 
instrument. 

Ŷ

Two-stage least squares estimation of loop coefficients can also be represented 
graphically if the dependent variable of interest is extricated first (rule II.19). 

5.16    PROBLEM. Obtain a single unbiased estimate of the loop coefficient c, 
 given instruments W and X. 

First the variable Z is extricated from the loop (by rule II.19). 
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where ∆ = 1 - cd. This is then transformed, as in the preceding example, to 
give 

 

Again a regression of Y on W and X defines the variable Y and a 
regression of Z on Y estimates coefficient c. 

ˆ
ˆ

As this example shows, extrication of variables in a system with loops converts 
the diagram to one without loops in which key relations still remain 
nonrecursive. Thus the problem of estimating a loop coefficient does not differ in 
nature from the problem of estimating the coefficient in other types of 
nonrecursive relations, though graphically it does involve the extra step of 
extrication. 

Identification Problems 

A loop does create additional difficulties by complicating the identification 
problem; for example, coefficient c in 5.16 was identified, given the instruments 
W and X. In fact, it was overidentified because there were two instruments for the 
one relation, Y→Z. It remains impossible, however, to identify the operator d in 
the system defined in 5.16. This can be seen by extricating Y instead of Z. 
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5.17   EXTRICATION OF Y FROM THE LOOP SYSTEM IN 5.16 

Now Z clearly is correlated with UY and d cannot be identified by ordinary least 
squares. Moreover, there is no instrument for the relation Z→Y; therefore it is 
impossible to create a decontaminated variable  that can be used to estimate d 
by a multiple regression of Y on , X, and W. It is not possible to use X and W to 
create a useful  because both variables have direct effects on Y. More 
specifically, coefficient b , which presumably would estimate d in a final 
ordinary least squares analysis, can be viewed as the coefficient obtained by 
regressing the residuals of Y (removing all predictions from X and W) on the 
residuals of  (removing all predictions from X and W). However, because  is 
created solely from X and W, these two variables predict it perfectly, and no 
residuals of  exist after predicting it from W and X. Hence the coefficien

Ẑ
Ẑ

Ẑ
WXZY ⋅ˆ

Ẑ

Ẑ

Ẑ

t 
 is undefined and d is not identified. WXZYb ⋅ˆ

At this point the simple idea of counting up equations and unknowns has 
broken down as a basis for deciding whether a system is identifiable. In the above 
example there are seven definable equations and a total of seven unknowns, but 
because there are two redundant instruments for the relation Y→Z and none for 
Z→Y, only one of the loop operators can be identified. The system as a whole 
remains underidentified. 

Moreover, it is clear now that the two-stage least squares procedure may 
break down when no instrument is available for a nonrecursive relation. The 
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applicability of rule V.4 must necessarily be constrained by another rule that 
states under what conditions the coefficients in an equation may be identified. 

Identifiability 

V.5   If a variable is in a loop and its disturbances are correlated with the values 
of its sources, then all the coefficients in its structural equation are identified 
only if conditions (a) and (b) hold: 

(a)     At least one instrument is available for every nonrecursive relation 
 represented in the equation. 
(b)    If the equation involves several nonrecursive sources—say the number is 

M—there must be at least M different instruments for the relations 
between the dependent variable and its sources. (Each of the 
instrumental variables may serve as an instrument for more than one of 
the M relations.) 

If each nonrecursive source is associated with a variable that is an instrument for 
relations involving that source only, the structural coefficients are always 
theoretically identified. 

Condition (a) states, in effect, that the coefficient in a particular nonrecursive 
causal relation is identified only if at least one instrument is available for that 
particular relation. 

 

5.18 

Coefficient c is identified because there is an instrument (X) that applies 
specifically to the Y→Z relation. Coefficient d is not identified because 
there is no instrument for the Z→Y relation. 
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Note that the same instrument may serve repeatedly in the analysis of different 
equations. 

 

 

5.19 

All coefficients are mathematically identified because the W→X relation is 
recursive and a is identified by an ordinary regression coefficient; W is an 
instrument for the X→Y relation and c is identified; W is also an 
instrument for Y→Z and d is identified. 

In other words, it is not necessary to have a separate instrument for every 
nonrecursive relation in a system. 

Condition (b) relaxes the requirements even more when a dependent variable 
is involved in several nonrecursive relations. There must be an instrument for 
every relation, but it is not required that each instrument apply to only one. 

5.20 
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V is an instrument for both the X→Z and Y→Z relations. Similarly, W is 
an instrument for both nonrecursive relations. Nevertheless, condition (b) 
is fulfilled, and ordinarily it would be possible to estimate all the 
coefficients: the a’s by ordinary least squares and the c’s by 2SLS. 

 

This is a variation of the above situation, and all coefficients ordinarily are
identified. V and W are instruments that identify the c’s and T is an
instrument that identifies the d’s. The a’s are also identified in terms of
statistics from 2SLS analyses. 

Following are examples in which one of the necessary conditions for 
identifiability is fulfilled but not the other. 

 

5.21 

W serves as an instrument for both nonrecursive relations, X→Z and Y→Z, 
and condition (a) is fulfilled, but because there is only one instrument for 
the two nonrecursive sources of Z condition (b) is not fulfilled. 
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Z is involved in two nonrecursive relations and there are two instruments, 
V and W; hence condition (b) is fulfilled. No instrument is available, 
however, for the Y→Z relation and condition (a) is unfulfilled. 

 

Conditions (a) and (b) in rule V.5 are necessary for identifiability. All 
coefficients in a nonrecursive system cannot be identified unless these conditions 
are fulfilled, but they are not sufficient conditions. Instances do occur in which 
conditions (a) and (b) are met and still some structural coefficients cannot be 
estimated at all or they are subject to such large errors that they are useless 
practically; for example, this would be true if by chance al = a3 and a2 = a4 in 
5.20. 

The last part of the rule defines a sufficient condition for identifiability. If each 
nonrecursive source is the “entry point” for an instrument that has no other entry 
points, then all structural coefficients are identified mathematically. 

5.22 

All the coefficients are mathematically identified because a unique
instrument is associated with each of the variables in the loop complex. 
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Indeed, this condition is oversufficient. If defines a useful goal in the theoretical 
specification of a system rather than a practical necessity because instances occur 
(in large systems especially) in which all coefficients in a block can be identified 
without fulfilling the condition. (A more precise, just-sufficient condition for 
identifiability is presented routinely in econometrics textbooks, but its 
formulation requires familiarity with matrix algebra.) 

Full-Information Methods 

Ordinary least squares and two-stage least squares are “single-equation 
methods” of estimation, meaning that they involve the estimation of coefficients 
in just one structural equation at a time in contrast to full-information methods 
that estimate all coefficients in a system simultaneously. Whereas single-equation 
methods depend on retracing causal paths only one or two links from a dependent 
variable, full-information methods use information on extended causal chains. 
This yields one of the major advantages of full-information methods. They make 
more efficient use of valid theory, literally incorporating all such knowledge into 
the estimate of each system parameter so that the estimates are more precise. The 
major disadvantage of full-information methods is that they similarly incorporate 
any erroneous theory into calculations. If part of a system has been misspecified, 
all coefficient estimates may be affected rather than just a few, as in a single-
equation method. Thus, in general, the full-information methods are most 
appropriately used in later stages of research when there is a high level of 
confidence in the theoretical specification of a system. 

Full-information methods can also make use of a priori knowledge about 
disturbance covariances, which leads to extra power in identification. The 
following simple example illustrates the logic involved: 

5.23 

 

Both coefficients in a loop are identified with a single recursive instrument 
if the disturbances of the loop variables are known to have zero 
covariance. 
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Using the instrument X, we identify coefficient c as indicated in 5.12. 

 

Because X, UY, and UZ are uncorrelated, the covariance σYZ can be defined
purely in terms of the variances of Y and Z. The algebra to demonstrate
this point is not given here, but the following expression is the result: 

 

Substituting (σXZ / σXY) for c and solving for d gives 

 

In many routine applications, however, full-information methods are applied only 
to improve estimation efficiency rather than to achieve extra identification 
power. Indeed, one of the procedures—three-stage least squares (3SLS)—
incorporates a 2SLS analysis as a preliminary to its final analysis. Ordinarily it 
simply gives more efficient estimates of coefficients that have been estimated by 
the 2SLS method. The analytic procedures for full-information methods are 
complex and can be described succinctly only by using a higher level of 
mathematics than is available for this book. Econometric textbooks provide 
detailed discussions of these techniques. 

Self-Loops 

No procedure is available for identifying the coefficients for self-loops from
cross-sectional data. Moreover, when self-loops are assumed to be absent when
actually they are present, the identification of some other coefficients necessarily
is affected, as indicated in 5.24. 
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5.24 EFFECT OF A SELF-LOOP ON IDENTIFICATION 

Assume for convenience that 

In which case 

Now suppose that the system is misspecified as 

The two-stage least squares estimates of these coefficients would be 

The structural coefficients determining Y are estimated accurately (within 
rounding error) but those affecting Z are too large. In fact, aZY and aZX are 
systematically biased such that they must be multiplied by the return 
difference of the self-loop (i.e., [1 - .3] = .7) to obtain the correct values. 

As the example suggests, the existence of an unspecified self-loop on a variable 
leads to biased estimates for coefficients in that variable’s structural equation. 
The resulting errors are relatively benign, however, because the estimated 
coefficients are in the right proportions relative to one another and they do 
reproduce accurately all static relations in the system. 



 184 Identification and Estimation 

Lagged Variables as Instruments 

Earlier measurements of a variable are sometimes included in a system 
specification as an aid to identification under the assumption that the variable 
measured earlier is an instrument for the same variable measured at a later time. 
This usage can lead to false inferences if stability in the key variable is 
maintained mainly by stability in other system variables, as shown in 5.25. 

 

 

5.25 

Subscripts on x and y indicate the time of measurement. The .8 is the 
stability coefficient for the x variable over the time interval; the lack of a 
path from y1 to y2 indicates the lack of stability in y except via its 
dependence on x. Now suppose that the relation between x and y is 
unknown and yl is used as an instrument to identify c in the following 
diagram: 

The value of c would be estimated as (.4/.2) = 2.0, which is a grave error 
(the true value is zero). This error could have been avoided by including x1 
in the analysis, in which case yl would be revealed as an inadequate 
instrument for the y2→x2 relation because it has no correlation with y2 
when the value of x1 is controlled. 

4.0

2.0

21

21

=ρ
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The major lesson here is that lagged values of a variable cannot be used routinely 
to identify its relations with other variables. In particular, we must know 
beforehand that the focal variable is a source for the others or the 
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lagged variable may not be a meaningful instrument. If such knowledge is 
lacking, overtime measurements must be made on all the variables to gain 
information about the system’s structure from temporal coordination. Such a 
longitudinal design is a combination of the cross-sectional approach we have 
already discussed and time-series analysis, discussed in Chapter 6. 

FACTORS AFFECTING ESTIMATES 

Sampling Error 

Many complications have been avoided by assuming that data are collected for 
every case in the population of interest. In practical problems, however, we 
typically examine a sample of cases from the population. Sample variances and 
covariances are likely to be somewhat different from the true values in the 
population because of idiosyncrasies in the particular subset of cases under 
examination. Substitution of the erroneous variances and covariances into 
identification formulas naturally yields somewhat erroneous estimates of 
structural coefficients as well. 

A sample of three cases has a high likelihood of being idiosyncratic and 
unrepresentative of a population. Just by chance, for example, all three cases may 
be above the population mean on one variable and below it on another. Samples 
of 10 cases have less chance of being idiosyncratic because it is less likely that 
biases in so many cases will be in the same directions. As we move to samples of 
hundreds or thousands, the chances of idiosyncrasy and nonrepresentativeness 
decrease even more (and this is true whether the population size is 10,000, a 
million, or a billion). Thus the larger the sample, the more likely it is that its 
statistical characteristics will match those of the population as a whole. 
Consequently the expected error of parameter estimates decreases regularly 
with increasing sample size. The minimal useful sample size depends on 
how much error in estimation we are willing to tolerate, on the number of 
variables, on the strength of relations in the system, on which estimation 
procedures are being used, and on a number of other factors considered 
below. A sample of 100 cases is usually necessary before estimations have 
much credibility when dealing with social systems; the number must be 
larger if the system is large, if measurements are poor and correlations are 
weak, and if estimation is by 2SLS rather than OLS. There are situations in 
which a sample smaller than 100 cases can yield interesting information, 
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but ordinarily a larger—even a much larger—sample is needed to get results of 
value. 

In addition to being large enough, a sample must be drawn without biases that 
could create nonrandom idiosyncrasies. Appropriate sampling procedures and 
other methodological aspects of sampling are discussed in textbooks on the topic 
(see chapter references). 

Strength of Relations 

The structure of a system may make it difficult to estimate parameters accurately 
unless large samples are available; for example, the following simple system 
(shown with all variables standardized) presents problems in the accurate 
estimation of some of its coefficients from sample data. 

 

5.26 

True correlations are 

 

A set of hypothetical sample correlations might be 

 

The identification formula for pzy is 

 

Applied to the true correlations, this gives 

 

Applied to the sample correlations, the formula gives 

 

Thus in this case the sample data provide an inaccurate estimate of 
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the value of pzy by indicating a negative relationship when the true 
relationship is positive. 

 

 

 

The erroneous result in this example is largely due to the high degree of 
collinearity among the determinants of z (ρxy = .90). This exaggerates the impact 
of the errors in the sample correlations (which are not atypical of those obtained 
in even fairly large samples). 

A collinearity problem exists when the correlations between two or more 
determinants of a dependent variable are much higher than the correlations 
between the dependent variable and the determinants. Accurate estimation of 
structural coefficients then requires that estimates of true correlations have little 
error which implies the need for extremely large samples. 

The strength of relations also influences the accuracy of estimates based on 
instrumental variables, as shown in 5.27. 

5.27 

True correlations are 

A set of “observed” correlations based on a hypothetical sample is 

An identification formula for ρzy, using x as an instrument, is (from 5.11) 

Applied to the true correlations, this gives .30 (within rounding error).
Applied to the hypothetical sample correlations it gives 

 



 188 Identification and Estimation 

Hence the weak instrument in conjunction with even relatively small 
sampling errors in the values of correlations can yield an inaccurate 
estimate of the structural coefficient. 

 

 

A problem of weak instruments exists whenever an instrumental variable has a 
near-zero correlation with its dependent variable (in the above example this 
correlation is just .068); sampling errors in the observed correlations are 
magnified in the process of estimating parameters and the estimates are 
unreliable. If only one weak instrument is available in a problem, accurate 
parameter estimates can be obtained only by using a large number of cases so 
that sampling errors will be small. 

If additional instruments are available for the same relation, they can be treated 
together as a set in the 2SLS procedure, and the measure of adequacy is the 
multiple correlation (R) between the instruments and the dependent variable. 
Sometimes it is possible to make R large enough by using a number of 
instruments that would be inadequate separately. 

Measurement Imprecision 

Even if a whole population is being examined, the true values of variances and 
covariances cannot be obtained if variables are measured imprecisely. Hence 
empirical estimates of system parameters can be accurate only if measurements 
are accurate. 

Analyses of the measurement problem usually begin by assuming that 
measurement errors are unpredictable (random) disturbances in the observed 
values of a variable. This model translates readily into a path diagram. 

5.28 

X represents true variations;  represents the observed variations 
obtained on an operational scale; e represents the aggregate of rando

X~

m 
measurement errors. Ordinarily it is assumed that X and e are uncorrelated. 

In standardized form 
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The validity coefficient v measures the correlation between the true scores 
and the observed scores. 

 

 

 

 

 

The causal interpretation of the measurement problem can be integrated with the
ordinary analysis of a system, as indicated in the simple example in 5.29. 

5.29 

Both variables are assumed to be measured with error and the errors are 
assumed to be uncorrelated. 
Ordinarily to identify a we might use the formula in 5.1: 

Path analysis shows that the observed covariance of X and Y is equal to 
the covariance of the true scores. 

However, the variance of X is not accurately estimated by the empirical 
measurements: 

Hence, if we substituted the observed quantities based on fallible 
measurements into the identification formula, we would get 

Here we would underestimate the magnitude of a, the more so as the
errors in measuring X are greater. Note that errors in measuring the
dependent variable do not affect the accuracy of estimating an
unstandardized structural coefficient. Such errors, however, would bias the
estimate of a path coefficient because it is standardized on the basis of
both the independent and dependent variable. 
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Parameter estimates made from imprecise measurements generally are biased, a 
problem that can never be solved by just increasing sample size. In essence, 
measurement imprecision is an aspect of the identification problem. To get 
unbiased parameter estimates, we must estimate the variances of measurement 
errors in addition to all the other parameters in the system, and ordinarily not 
enough information is available. The solution to the measurement problem is to 
use instrumental variables or multiple indicators. 

5.30    The example in 5.29 could be dealt with by adding an instrument—
 even one that itself is measured imprecisely. 

 

By applying the usual formula for estimation from an instrument (5.12), 
we have 

 

Thus the estimate of a using the instrument is unbiased. Alternatively, the 
problem could be handled by obtaining additional indicators of X. 

 

 

For convenience in the illustration it is assumed that the two indicators are 
equivalent in scale units so that both are related to X by a coefficient of 
1.0. Now an unbiased estimate of the variance of X may be obtained from 
the path analysis formula for the covariance of the indicators. 
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This could be used to obtain two estimates of a: 

 

Efficient procedures for combining such multiple estimates are given in
more advanced references. 

Theoretically only one variable (i.e., one instrument or one extra indicator) need 
be added to obtain unbiased parameter estimates in a situation like that above. 
Most practical problems, however, are confounded by sampling as well as 
measurement errors, and the use of a single weak instrument or just two weak 
indicators would have the effect of magnifying sampling errors in calculations, 
thus producing final estimates too erratic to be of value. Hence the measurement 
problem must be attacked by including multiple instruments or multiple 
indicators in research design. Analyses must be correspondingly complex to 
incorporate all the information; for example, the use of instruments leads directly 
to 2SLS analyses (or an equivalent procedure), and the use of multiple indicators 
calls for other multivariate procedures such as factor analysis or canonical 
analysis (see references). 

As shown above, the measurement problem can sometimes be transcended by 
using instruments and 2SLS. Conversely, coefficient estimates based on 2SLS 
analyses are routinely unbiased by measurement errors, provided that the errors 
of measurement are uncorrelated across variables. Thus instrumental variables 
are powerful research tools that give unbiased coefficient estimates for intricate 
and imperfectly measured systems. 

Specification Errors 

Certain patterns of causal structuring are required for the valid application of the
estimation methods discussed in preceding sections. Recursive relations are
required for ordinary least squares; valid instrumental variables are needed for
2SLS. A specification error occurs if a particular pattern is assumed to exist
when it does not. Specification mistakes that falsely define causal priorities or
falsely eliminate disturbance correlations may lead to serious distortions in
coefficient estimations and to grave errors in the understanding of a system. 
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5.31 Suppose that the true system is 

 so pyx = .8 and pxy = 0 

If it is wrongly assumed that y is prior to x, then ordinary least squares 
would lead to the following results: 

pyx = 0 (by assumption) and pxy = .8 

This pattern of results is in grave error because it implies a causal pattern 
just opposite to what exists. 

Suppose that the true system is 

 
If it is wrongly assumed that w is an instrument for y → z, then 2SLS 
would lead to the following results: 

so pzy = 0 and pyz = .5 

pzy = .21 and pyz = .35 

These results are in grave error because a loop is implied when none 
exists. 
Suppose that the true system is 

 

pyx =.6 and pzy = .3 

If it is assumed that σxU(z) = 0 instead of -.4, then applying ordinary least
squares gives the following estimates for the structural coefficients: 

pyx =.6 and pzy = .06 

If x were used as an instrument in 2SLS to allow for a possible correlation 
between Uy and Uz (the assumption being that σxU(z) is zero), the estimates 
would be 

pyx =.6 and pzy = -.37 
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The OLS results are seriously in error. The 2SLS results are gravely 
misleading. 

Ordinary least squares does not give sensible results unless variables are entered 
in analysis according to their true causal priorities. Results from two-stage least 
squares analyses are inaccurate if the variables used as instruments do not, in 
fact, fulfill the requirements for instrumental variables. 

ELABORATION IN SOCIAL RESEARCH 

Research interest frequently centers on a core system of greatest theoretical or 
practical relevance. Initially it may seem a straightforward matter to obtain some 
empirical data and estimate the desired system parameters. In fact, matters are 
usually not so simple. The problems of identifying a system snowball, leading 
from one to another, so that an elaborate research scaffold may have to be 
constructed before modest ends can be achieved. 

Leaving key variables out of the system specification creates correlated 
disturbances which eliminate system recursiveness and perhaps undermine the 
validity of instruments. To avoid the biased estimations that can develop from 
correlated disturbances either the key variables must be brought into the analysis 
or other variables must be entered that can serve as instruments for the 
contaminated relationships. Either way, more variables may have to be analyzed 
than originally were considered relevant. Similarly, the coefficients in loops can 
be identified only if enough adequate instruments are available. This may require 
expanding the system to include variables of little theoretical or practical interest, 
including them simply because they fit research needs. 

Because social variables are rarely measured precisely by any single index, 
a measurement problem routinely exists in social research. This, perhaps 
more than any other factor, calls for manifold expansion of the number of 
variables that have to be considered. If measurements are imprecise but still 
of fairly high reliability, then at least two measurements are needed for every 
source variable in the system before there is any hope of obtaining unbiased 
estimations of system parameters (that is, each variable must be associated 
with two indicators or with one indicator and one instrument). In the 
more likely situation of moderate and low reliability measures, 
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numerous indicators or instruments may be required for each source variable to 
estimate system parameters reliably. 

Thus quantitative studies of even fairly simple social systems tend to expand 
into intricate research projects that require detailed planning, the collection of 
large quantities of data, and the use of sophisticated statistical techniques to 
extract the results. 

ZERO COEFFICIENTS 

An analysis may reveal that some of the coefficients in a structural equation are 
zero, which suggests that some of the conceivable causal relationships in the 
system actually did not occur in the population that was examined. Such causal 
inference operationalizes rule I.5, which stated that one event does not cause 
another if occurrences of the first do not imply occurrences of the second. A zero 
coefficient means that variations in a given source do not imply variations in a 
particular outcome. Consequently it is concluded that the first variable is not a 
direct cause of the second. 

Whether the true value of a coefficient is zero actually may be somewhat 
ambiguous, given the results from an empirical study. Coefficient estimates are 
themselves subject to error (as discussed above) and a null effect from one 
variable to another may turn out to be associated with a coefficient estimate that 
is only near zero in value rather than exactly zero. This means that “small” 
coefficients, as well as zero values, must be regarded as indicating no effect. Yet 
the existence of errors in estimates also opens the possibility that an estimated 
coefficient is only accidentally small, the true value being substantially different 
from zero. If we were to treat all near-zero coefficients as zero, we might 
eliminate some relationships that actually are operative. 

Statistical tests can be applied to assess the probability that an estimated 
coefficient corresponds to a true value of zero (see chapter references) and such 
tests should be used routinely to gain information for deciding whether an effect 
exists. Such tests, however, are only an aid to decisions, not a mechanical routine 
for decision making. If we are dealing with a small sample (or any other situation 
that tends to inflate the errors in coefficient estimates), a statistical test 
may be too insensitive for our purposes and will lead us to reject causal 
effects that actually exist. If we are working with a large sample, a 
statistical test may be so sensitive that it will lead us to retain minute 
coefficients that might be nonzero only because of minor biases in estimates 
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(developing, for example, from unresolved measurement problems or from a 
sample containing a few cases in which operators failed to act). Thus, in addition 
to statistical information, a pragmatic element has to enter such decisions. A 
relationship should not be eliminated from a model if the coefficient indicates 
that the magnitude of the effect is comparable to other effects being considered, 
even if a statistical test suggests that the coefficient is not “significantly” 
different from zero. On the other hand, even if the coefficient is statistically 
significant, a relationship may be eliminated from a model if the magnitude of 
the effect is so small in relation to other effects that it has no practical or 
theoretical interest. 

Eliminating relationships on the basis of near-zero coefficients permits the 
simplification of the system formulation. Arrows can be removed from the 
flowgraph and terms dropped from structural equations. The remaining 
coefficients in the simplified system should be reestimated to improve their 
precision; that is, the data should be reanalyzed by employing the new constraints 
to obtain improved estimates of the remaining system parameters. 

SOURCES AND ADDITIONAL READINGS 

Several articles that introduce least squares estimation techniques are reprinted 
conveniently in Hubert M. Blalock, Jr., Ed. Causal Models in the Social Sciences 
(Chicago: Aldine-Atherton, 1971). Kenneth C. Land, “Formal Theory,” Chapter 
7 in Herbert L. Costner, Ed., Sociological Methodology: 1971 (San Francisco: 
Jossey-Bass, 1971), further elucidates the relations between theories, models, and 
data. 

The various estimation techniques were developed mainly by econometricians, 
and econometrics textbooks provide the most comprehensive discussions of the 
procedures. An elementary treatment (though still employing matrix algebra—
see Chapter 3 readings) is provided by Ronald J. Wonnacott and Thomas H. 
Wonnacott, Econometrics (New York: Wiley, 1970). The presentations of Arthur 
S. Goldberger, Econometric Theory (New York: Wiley, 1964), and Henry Theil, 
Principles of Econometrics (New York: Wiley, 1971), are mathematical but 
notable for their detail and authoritativeness. 

The Goldberger and Theil texts pay considerable attention to sampling errors 
in estimation (as well as to other sources of error). Additional discussion of 
sampling problems from an operational perspective is available in Leslie Kish, 
Survey Sampling (New York: Wiley, 1965). 
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Sociologists have focused particularly on how the impact of measurement 
errors can be controlled when estimates of structural parameters are being 
obtained. A number of key articles are included in the Blalock reader cited above. 
Additional works are D. R. Heise and George W. Bohrnstedt, “Validity, 
Invalidity, and Reliability” Chapter 6 in Edgar F. Borgatta and G. W. Bohrnstedt, 
Eds., Sociological Methodology: 1970 (San Francisco: Jossey-Bass, 1970), 
Robert M. Hauser and Arthur S. Goldberger, “The Treatment of Unobservable 
Variables in Path Analysis,” Chapter 4 in Herbert L. Costner, Ed., Sociological 
Methodology: 1971 (San Francisco: Jossey-Bass, 1971), and R. M. Hauser, 
“Disaggregating a Social-Psychological Model of Educational Attainment,” 
Social Science Research, 1 (1972), 159-188; all depend on matrix algebra in 
derivations. The classical psychometric approach to measurement is introduced 
lucidly by Jum C. Nunnally, Psychometric Theory (New York: McGraw-Hill, 
1967). A detailed, authoritative reference on the psychometric tradition is 
provided by Frederic M. Lord and Melvin R. Novick, Statistical Theories of 
Mental Test Scores (Reading, Mass.: Addison-Wesley, 1968). 

Making sense of a multitude of variables is a classical problem in social 
science research. Morris Rosenberg, The Logic of Survey Analysis (New York: 
Basic Books, 1968), provides an introduction to the problems with numerous 
illustrations. Mathematically derived approaches are presented in the papers by 
Hauser and Goldberger and by Hauser cited above. K. G. Jöreskog, “A General 
Method for Estimating a Linear Structural Equation System,” Chapter 5 in A. S. 
Goldberger and O. D. Duncan, Eds., Structural Equation Models in the Social 
Sciences (New York: Seminar Press, 1973), introduces a model applicable to a 
great variety of problems involving multiple indicators and complex causal 
relations among abstract variables. (The Goldberger-Duncan book also contains 
exemplary empirical work on estimation of linear causal models.) 

Multivariate analyses of a sample of cases observed at several times present a 
plethora of problems, some of which are considered in D. R. Heise, “Causal 
Inference from Panel Data,” Chapter 1 in E. F. Borgatta and G. W. Bohrnstedt, 
Eds., Sociological Methodology: 1970 (San Francisco: Jossey-Bass, 1970), 
Otis Dudley Duncan, “Unmeasured Variables in Linear Models for Panel 
Analysis,” Chapter 2 in H. L. Costner, Ed., Sociological Methodology: 
1972 (San Francisco, Jossey-Bass, 1972), and K. G. Jöreskog, “Factoring 
The Multitest-Multioccasion Correlation Matrix,” RB-69-62 (Princeton, 
N.J.: Educational Testing Service, 1969). Some models for pooling 
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overtime data are presented mathematically in Jan Kmenta, Elements of 
Econometrics (New York: Macmillan, 1971), pp. 508-517. 

EXERCISES 

1. Can the following variables be organized into a recursive model: father’s 
education, father’s occupational standing, son’s education, son’s occupational 
standing? Discuss the various considerations. 
2. The observed correlations among father and son status variables were as 
follows in one study (P. Blau and O. D. Duncan, The American Occupational 
Structure, New York: Wiley, 1967, p. 169). 

 Fa Ed FaOcc SoEd SoOcc 
  
FaEd 1.000 .516 .453 .322 
FaOcc  1.000 .438 .405 
SoEd   1.000 .596 
SoOcc    1.0OO 

Suppose that a strict recursive model applies in the population being studied. 
Estimate all the relevant standardized parameters of the model. Use the 
specifications from exercise 5, Chapter 1. (A calculator is needed for this and 
some subsequent problems.) 
3. Suppose a number of persons are brought to a task in which they can exchange 
deference and domination acts. Dyads are formed experimentally by pairing 
persons whose outside occupations are associated with various levels of social 
power. Ratings of the powerfulness of these occupations are obtained from 
participants before beginning the task. After extended interaction, the task is 
terminated, and a second set of ratings is obtained by asking each person to rate 
himself and his partner on the same powerfulness scale. The model on page 198 
might be used to interpret the experimental results. 

O1 and O2, power ratings for the occupations of persons 1 and 2, respectively, 
translate to initial estimates of interpersonal power (I1 and I2) by the multiplier k 
with possibilities of judgmental disturbances U1 and U2. D is the perceived 
discrepancy between the power of self and other adjusted by one’s personal 
tendency to see the self as stronger or weaker than others (P). Deferring 
or dominating acts are represented by a; for example, if a person 
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perceives an adjusted discrepancy of +1.0 (self more powerful than other), a 
dominant act is emitted, thus adding a units to self-power and subtracting a units 
from other’s power. If a -1.0 discrepancy is perceived, a deferring act subtracts a 
units from self-power and adds the same amount to the other’s power. 

(a) Suppose the researcher regresses the terminal values of I1 on O1 and O2 in 
the manner of ordinary least squares. What systemic parameters are estimated by 
the regression coefficients? Could an estimate of a be derived in this way? 

(b) Suppose the O and I variables were assessed in terms of likeability or 
goodness instead of power. Then a might change sign, standing for acts of 
altruism and exploitation rather than dominance and deference; that is, perceiving 
a positive discrepancy in goodness leads to an act that transfers some of one’s 
own worth to the other; perceiving a negative discrepancy leads to exploiting the 
other’s goodness to improve one’s own standing. With this change what would 
the expected effect be on the regression coefficients when I1 is regressed on O1 
and O2? Are problems of identification different in the new system? 
4. Sociologists debate whether social structure is determined materialistically or 
by the force of ideologies. Suppose we decide to examine the issue empirically in 
the population of small societies that have been described by ethnographers. 
(Systematic data on more than 1000 cultures have been published in the journal 
Ethnography.) For heuristic purposes let us suppose that the relevant variables 
can be represented as follows. 
 S: the level of elaboration of a hierarchical social structure as reflected 
in the occurrence of classes, castes, and high political offices. 
 M: the society’s materialistic advantages in the subsistence realm in 
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dexed by a scale of subsistence technology ranging from hunting and gathering to 
advanced agricultural techniques such as cereal agriculture with irrigation. 

I: the development of an authoritative moral ideology for ordering social 
relations reflected in beliefs about the power of supernatural agents to sanction 
human behavior. 
The task is to estimate structural coefficients aSM and aSI and, in particular, to 
determine whether one or the other of these coefficients is negligible in 
magnitude. The relationships may not be recursive, however. The elaboration of 
social structure conceivably could have a return effect on subsistence technology 
or moral ideology. Moreover, advances in all three areas might be achieved by 
way of cultural diffusion from other societies so that disturbances of the variables 
might be correlated. Accordingly, we must attempt to specify instruments that 
would allow us to identify the structural coefficients. 

(a) Evaluate each of the following variables that characterize a society’s locale 
as a possible instrument for identifying the structural coefficients aSM and aSI. 

• Average length of growing season 
• Soil fertility 
• Severity of everyday habitat (i.e., the extent of conditions threatening 

death by thirst, starvation, predators, drowning, and falling).  
• Accessibility of metal ore deposits. 

(b) Suppose that we find that the growing-season variable has a correlation of 
zero with the social structure variable S and also with the ideology variable I. 
Does this information help in deciding whether it is an adequate instrument for 
the relation M→S? 

5. At the end of Chapter 4 it was suggested that attitudes and behaviors might be 
related in a control loop. Thus identifying the effect of one on the other from 
survey data would require the use of instruments. Suppose that questions are 
designed that adequately measure a person’s attitude toward alcoholic beverages 
and rate of alcohol use. The items are included in a survey of students at a large 
state university in a region in which the legal drinking age is 21 for hard liquor, 
18 for beer. Other items determine whether the student was raised in a family 
with fundamentalist religious identification, the amount of weekly spending 
money the student has for entertainments, and the student’s age. Evaluate the last 
three items as instruments for identifying the coefficients in the attitude-behavior 
loop for alcohol. 
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6. Statistics characterizing a weighted composite score can be calculated from the
variances and covariances of its component variables; for example, suppose that
we want to generate a new variable, V , by adding together variables X and ˆ Y
weighted by wl and w2. If we know σX

2, σY
2, and σXY, it is easy to define ,

, and . Moreover, suppose that originally we had another variable, Z,

and we know σ

2
V̂

σ

VX ˆσ VY ˆσ

XZ and σYZ. Then it also is easy to define . The logic can be

seen by applying path analysis to the following diagram: 
VZ ˆσ

 
This means that a two-stage least squares analysis can be conducted without 
actually going back to individual observations after the first round of regression 
analyses; for example, suppose that we have the following problem: 

 

The values of wl and w2 are estimated by regressing V on X and Y (or by the use
of the regression coefficient formulas given in Chapter 3). Then, using the above
procedures, we can estimate the variance of the predicted score V  and its
covariance with Z. These figures are sufficient to compute a second-stage
regression estimating a (again referring to formulas in Chapter 3). Use
 

ˆ



201 
 
Exercises 

 

these procedures to do a 2SLS estimation of the structural coefficients in the 
following model: 

The variances and covariances of the variables are as follows: 

 X Y V Z 
X 1.000 .300 .283 .235 
Y .300 1.000 -.113 .466 
V .283 -.113 1.068 -.164 
Z .235 .466 -.164 1.051 

7. Minority racial groups in America might improve their socioeconomic position 
by working toward a higher average level of education, whereupon a higher 
average income would follow. It could also be argued that minority groups 
should demand better jobs and wages so that education and other forms of status 
can be bought. These arguments imply that theoretically we cannot eliminate a 
loop between average education and average income in a minority population. If, 
however, we could define suitable instruments, the issue could be examined 
empirically. We could estimate the coefficient from education to income and 
from income to education to assess which of the effects have operational support 
in American society. Data from a study of 63 standard metropolitan statistical 
areas (SMSAs) can be used to illustrate the kinds of results that might be 
obtained [Richard Child Hill, “Unionization and Racial Income Inequality in the 
Metropolis,” American Sociological Review, 39 (1974) 507-22]. The variables 
listed were included in the study. 
 S: Presence of the SMSA in the South. 
 U: Extent of unionization within the SMSA. 

P: Percent of the SMSAs population that is nonwhite. 
M:  Percent of the SMSAs labor force that is in manufacturing industries. 

 E: Median education among nonwhites in the SMSA. 
 I: Median family income among nonwhites in the SMSA. 
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The correlations among these variables in 1960 were reported as follows: 
 S U P M E I 
S 1.000      
U -.556 1.000     
P .591 -.258 1.000    
M -.253 .510 -.233 1.000   
E -.574 .226 -.684 -.134 1.000  
I -.749 .569 -.527 .185 .709 1.000 

The author of the article did not focus on the issues raised here, but the following 
model might be proposed as a basis for analyzing the data. (The V’s represent 
disturbances.) 

 

 (a) Use the reported correlations and the diagram to estimate a and c. Use the
procedures presented in exercise 6 to implement the 2SLS approach. 
 (b) Estimate a and c again, using the following model. 
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(c) Compare the results from (a) and (b). In particular, discuss the adequacy of 
the instruments and biases they might have produced. (Remember the sample size 
in your discussion.) 
8.  We continue with the variables and data given in exercise 7. Suppose now that 
we are willing to accept the following specification: 

 

Use this model to reestimate coefficient a and c. Use the results from this 
analysis with the results from exercise 7 to formulate a strategy for improving the 
socioeconomic position of urban nonwhites. 
9.  Covariances among disturbances can be estimated fairly easily from observed 
variances and covariances if the system does not contain loops and if instruments 
are available; for example, suppose that we have the following simple system: 

 

 

An estimate of b is provided by (σXZ/σXY). The covariance of disturbances U and 
V is identified as 

or 

 

Typically we are dealing with variables that are measured imprecisely. 
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in which case key covariances and variances of the observed variables will have 
the following relations to the covariances and variances of the true variables: 

 

The empirically observed statistics are used to estimate system parameters. 
Hence in practice the estimate of the disturbance covariance would be 

 

Use the formulas given to define how imprecise measures affect estimates of
disturbance covariances. Are we justified in trying to give theoretical
interpretations to estimated disturbance covariances when variables have been
measured with error? 



 

6 DYNAMIC  
CONSIDERATIONS 

A static analysis requires that the present values of a system’s inputs have been 
maintained at the same levels for a period long enough to have their full causal 
repercussions felt throughout the system. Thus the observed outcomes reflect 
ultimate consequences of the inputs. However, social analysts may be interested 
not only in ultimate outcomes but also in the processes leading to these 
outcomes. The trends and wiggles of social system variables constitute history 
itself and are of immense personal significance to humans. Moreover, it may be 
necessary to consider a system’s dynamics to identify undesirable processes that 
intervene between inputs and outputs or processes so extreme that they destroy 
the system before a static state can be achieved. Some consideration of system 
dynamics is needed also just to gain a better understanding of static analyses. The 
requirements that inputs are held constant and outcomes fully realized are not 
always present in reality: inputs may have values that vary over time or a system 
with stable inputs may not yet have generated the full consequences of these 
inputs. In either of these circumstances the usual statistical estimates of the 
system’s parameters will be biased and we need to turn to dynamic analyses to 
comprehend the problem. 

The study of system dynamics focuses on the period ignored in static analyses 
between the initiation of a new input and the final system outcomes. As in statics, 
there are both deductive and inductive matters for attention. At the deductive 
level dynamic analyses provide information about a system’s adjustment 
phenomena. The results may be of particular interest because changes in the 
values of variables in a linear system are often complicated nonlinear functions 
of time. Also, the study of dynamics opens up a new topic—the processing of 
information in the form of time-varying input “signals” in order to determine 
how a system responds to temporal patterning 
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of inputs and how it generates new configurations of its own. On the inductive or 
inferential side the study of system dynamics leads to additional procedures for 
identifying the structure of a system by using time-series data. 

Although the topic of system dynamics is clearly important to social scientists, 
it cannot be treated systematically here. Even an elementary introduction would 
require more pages and more mathematics than we have already presented in this 
book. (Research on system dynamics literally involves a whole new dimension—
time—which requires longitudinal elaboration of data-gathering procedures and 
which complicates analyses by drawing in the mathematics of complex 
variables.) This chapter has the modest aim of trying to deepen the understanding 
of static models by a brief consideration of a few selected issues in system 
dynamics. First, the dynamic characteristics of some simple linear systems are 
considered to gain an appreciation of their complexity. We then consider some 
ways that estimates of static-model parameters may be confounded by collecting 
data from systems that are dynamic rather than in a static state. 

SIMPLE SYSTEM DYNAMICS 

Causal Lags 

There is usually at least a brief lag while operators construct effects from causes. 
Accordingly, causally related events are most often separated by some lag period, 
and systems typically respond to an input with some dynamic process, however 
simple or brief; for example, beginning with the instant a car’s gas pedal changes 
position there is a small but definite period in which there is absolutely no change 
in the torque delivered to the wheels because the chain of effects has not yet 
reached that stage; or, following passage of a piece of legislation, there is a 
period of no effect for the general citizenry while administrators gear up to 
implement the policy. As an analytic convenience it is useful to assume that a 
causal lag always exists while allowing that in some instances the lag time may 
approach zero for all practical purposes. 

Lag periods vary considerably according to the kind of system that is being 
considered. Psychological latencies usually can be measured adequately 
in hundredths-of-a-second, interpersonal latencies in terms of seconds or 
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minutes, formal organization latencies in terms of hours or days, and community 
or societal latencies in terms of months or years. Thus we generally cannot expect 
to study the dynamics of different levels of organization within the same time 
framework. Processes that might interest a psychologist occur on a time scale that 
is useless to a sociologist and vice versa. Yet, with an adjustment for the different 
time scales that are appropriate for different phenomena, the formal 
characteristics of change may be quite similar, regardless of the level of analysis. 
Indeed, this is one of the basic findings of general systems theory. 

A diagramming device is available to represent causal lags on flowgraphs and 
to show that lag periods vary for different operations. Following conventions that 
have developed in the system dynamics literature, a time delay is symbolized by 
the letter z and its relative magnitude is indicated by an exponent with a minus 
sign. To represent a causal lag period in a diagram we simply “attach” an 
appropriate time symbol to the symbol representing the causal operator, as 
illustrated in 6.1. 

 

  

6.1 

Operator a requires two units of time to transform a change in X into a 
change in Y. 

The actual time scale is determined by the problem being considered; for 
example, the two units of time indicated in 6.1 may refer to two nanoseconds for 
an electrical engineer or to two years for a political scientist. 

This representation of time lags is especially attractive when dealing with 
linear systems because all the usual rules of flowgraph analysis can be applied in 
a meaningful way. The time symbol is treated as if it represented a distinct linear 
operator with an unknown value that is subject to the usual multiplication and 
addition rules. The kinds of flowgraph interpretation displayed in 6.2 follow 
directly (remembering the special algebraic rule for multiplying exponentials; 
i.e., zm· zn = (zm + n). 

6.2 reduces to 
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A change in W causes a change in X one period later and a change in X 
causes a change in Y three periods later. Thus a change in W implies a 
change in Y four periods later. 

  reduces to 

A change in W causes a change in Y two periods later and generates an
additional change in Y four periods later. 

The graph reductions in 6.2 define the transfer functions for the simple systems 
illustrated. In a similar way the full battery of graph reduction rules can be 
applied to define the transfer functions for more complicated systems with loops. 
Making an interesting application of these results requires recognition of the 
symbol z as a complex number and carrying on with full-scale dynamic analysis. 
For present purposes it is enough that we have conventions for the graphic 
representation of the relations among system variables and the time element 
involved in system operations. 

Elementary Dynamic Patterns 

The trends and wiggles that become evident when the values of a system variable 
are plotted over time are referred to commonly as a signal. It is the configuration 
of values that constitutes the signal. One common problem in dynamic analysis is 
to describe a complicated signal by a relatively simple mathematical expression. 
A second is to find a relatively simple mathematical expression (the transfer 
function) that can be adapted to describing how a particular system transforms an 
input signal into an output signal with a different configuration. In this way we 
deal with the response of a given system to different inputs or with the treatment 
of a given input signal by different systems. 

Because our concern here is still with systems that can be characterized as 
being typically in a static state, we can sidestep most of the analytic problems 
created by complex input signals. The usual presumption in working with 
static models is that inputs have been changed all at once at some earlier time 
and then held constant until the system operators have worked 
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out all the outcomes. Thus the input signals of primary interest are the simple 
step functions illustrated in 6.3. 

 

 

 

 

6.3 A STEP FUNCTION 

Increase in X occurring at time zero 

Time 

The goal, then, is to develop some rough notions about how various kinds of
system transform step changes in inputs into a variety of output signals during
the transitional period before a static state is reached. 

The simplest system consists of a single operator that generates a response all
at once some time after the input signal has changed value. If a step function is
provided as the input signal, a lagged step function is obtained as output, as
shown in 6.4. 

6.4   The basic system is 

Suppose the value of X is increased one unit at a point in time arbitrarily 
labeled zero. The system’s input and output signals will have the following 
forms: 

Time 
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If the structural coefficient has a negative value, the output signal changes 
in the opposite direction from the input signal; that is, if a step function is 
applied to the following system 

 

 
 we would get the following configuration: 

YX
-z-  →
2½

 

 

 
Time 

A step change in the input would produce the following signals. 

reduces to 

6.5   The system 

The only interesting feature in the dynamics of such a simple system is the 
waiting period between input and output changes. 

A recursive array of operators can generate a more complex output signal 
because the effects generated along different paths will usually arrive at the 
output variable at different times. If all the operators in the system have positive 
effects, the final values of the output variable will tend to cumulate 
monotonically over time. If some negative paths exist between the input and 
output, the value of the output may move both up and down before it reaches its 
static state. Both points are illustrated in 6.5. 
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If the operator between X and Y had a negative effect, the reduced system 
would be 

and the input-output signals would have the following configuration: 

 

 

Some social processes can be described in terms of recursive diffusion through a 
social network (e.g., adoption of a technological innovation), in which case any 
outcome that is dependent on these changes (e.g., productivity) will tend to 
change incrementally following a step increase in the input. A simple illustration 
is given in 6.6. 

Time 

6.6    This flowgraph might represent a hierarchical influence network in a 
 small group of farmers: 
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Variables A through G could be interpreted as a measure of the agricultural 
technology of each farmer, and all of them might be related additively to a 
community variable such as agricultural surpluses (S); besides the above 
arrows, we have the following: 

 

where p indicates the quantitative relation between a farmer’s technology in 
a given year and community surpluses in the same year. When the two 
diagrams are combined and reduced, we get the following relation between 
A and S: 

A step increase in the level of A’s technology at time zero would 
produce the following pattern of change in community surpluses: 

 
Time 

The output pattern of change can be roughly represented by the continuous 
“sigmoid” curve shown as a dotted line. The continuous-curve 
approximation is not precise in such a small community, but the appearance 
of fit would be better if surpluses were constituted by small contributions 
from hundreds of farmers. 

The example in 6.6 illustrates that even those systems lacking feedback can 
produce relatively complex transformations of input signals. Even more 
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intricate output signals than those shown could be obtained by including negative 
relations in the system considered in 6.6—negative relations might represent 
competitive, exploitive, or deceptive relations among farmers. With such 
negative operators, structures could be defined in which A’s increase in 
technology leads to fluctuation or even a net reduction in community surpluses 
over time. 

 

Feedback Effects 

Systems with feedback always generate relatively complicated output signals 
from step changes in inputs. Indeed, feedback systems can be designed to 
transform a step input into an output signal of nearly any desired degree of 
complexity and matching nearly any desired pattern. Here we focus on only a 
few basic types of pattern that are produced by relatively simple feedback 
structures. 

Amplification—the simplest type of feedback phenomenon—is produced by a 
loop with positive return effect. In Chapter 2 the net effect or final outcome from 
such a loop was examined. Now interest focuses on the series of changes that 
culminates in the final outcome. In general, these changes occur in the 
cumulative monotonic pattern illustrated in 6.7. 

6.7  Suppose we have a system in which a change in W causes a change in X 
three periods later, any change in X causes a change in Y two periods later, 
and any change in Y causes a change in X one period later. Assume further 
that all structural coefficients are positive, in which case the loop has a 
positive return effect, and it is an amplifier. Assignment of some arbitrary 
values to the coefficients produces the following system: 

 

Mason’s theorem (rule II.16) could be applied as usual to reduce X and Y 
on to W, but then to employ the results in graphing output signals we would 
have to recognize z as a complex number and carry out some advanced 
mathematical analyses. Instead, we simply follow the system’s 
operations through the first few periods after a change in W in order to 
characterize its dynamics. Suppose that before the change in W all 
three variables have a value of zero. At time zero W increases 
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in value to 1.0; X and Y still would remain unchanged because of the three-
period lag between changes in W and X. From then on values of X and Y 
will change as shown in the following table. (Read ∆ as “the change in”; a 
subscript i is read “at time i.”) 

Time Value of X Value of Y 
1 0 0  
2 0 0  
3 0 + 1(∆W0) = 1 0 
4 1 0  
5 1 0 + .5(∆X3) = .5 
6 1 + .6(∆Y5) = 1.3  .5 
7 1.3  .5 
8 1.3 .5 + .5(∆X6) = .65 
9 1.3 + .6(∆Y8) = 1.39  .65 

10 1.39  .65 

∞ 1.43 .71 

 

The values for ∞ are obtained by applying rule II.16 to the static system (in 
which case the z’s are ignored). Graphing the system variables over time 
gives the following: 

The loop in 6.7 is an amplifier because it takes the initial change in X (or Y) 
and works it up into a larger final change. The growth process does not occur 
all at once but in steps. As changes circulate around the loop again and again, 
they increment the values of the variables a bit more on each cycle. In the 
example most of the growth occurs during the first few cycles. The size of the 
increments is less and less as time goes on until at some point they can be 
ignored and for all practical purposes the variables have attained 
 



 215 Simple System Dynamics 

their final values. This .is generally true of stable amplifying loops (unstable 
loops are considered later). Change occurs in conformity with an “exponential 
curve” that levels off toward some constant value. 

 

 

6.8  Stable amplifying loops produce continually decreasing growth as a response 
to an initiating change. The developmental period can be characterized 
approximately by a smooth exponential curve, as shown by the dotted line. 

An amplifying loop responds to a decrement in an input value (rather than 
an increment) with the same kind of process, except that the exponential 
curve is “upside down” and the value of the loop variable declines in a 
stepwise pattern. 

A stable loop with a negative return effect is a control structure because it 
tends to counteract change and eventually system outcomes are less affected 
by changes in system inputs than they were at the beginning. Dynamic 
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processes are especially significant in control loops because recovery is not a 
smooth monotonic process. Controlled system variables recover from 
disturbances by a process of oscillation, as indicated in 6.9. 

 

6.9  The following system tends to counteract effects of changes in W. The 
controlling nature of the system is reflected in the negative return effect for 
the loop—(.9) ( -.8) = (-.72). 

Assume that all variables have values of zero before W is changed one unit 
at time zero. Then values of X and Y at later times are as follows: 

Time Value of X Value of Y 
1 0 + 1(∆W0) = 1 0 
2 1  0 + .9(∆X1) = .9 
3 1  .9 
4 1 + (- .8)(∆Y2) = .28 .9 
5  .28 .9 + .9(∆X4) = .25 
6  .28 .25 
7 .28 + (-.8)(∆Y5) = .80 .25 

8  .80 25 + .9(∆X7) = .72 

∞  .58 .52 

Thus the values of the output variables have the following patterns over 
time: 
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When the value of a variable in a stable control system is changed, a sequence of 
adaptations in that variable is triggered which culminates in a final change that is 
less extreme than the beginning change. But in the process of getting to the final 
state the value of the variable swings too far one way, then too far the other way, 
only gradually homing in on the ultimate resting point. As with amplifying loops, 
a stable control loop generates the biggest shifts at the beginning of the process. 
After some point in time the oscillations are small enough to ignore, and for all 
practical purposes the value of the variable has attained its final state. 

As indicated in 6.10 the oscillations in a controlled variable conform to a 
sinusoidal curve that is damped with time. This fact is used extensively in 
mathematical analysis of dynamic control systems. 

 

 

6.10   The sinusoidal curve underlying changes in a control loop. 

A loop that is isolated from other loops is unstable if its return effect is greater 
than or equal to 1.0 (in amplifiers) or less than or equal to -1.0 (in control loops). 
Unstable loops show the same general patterns in their output signals as stable 
loops, except that the changes generated become larger with time rather than 
smaller. (Changes continue at the same level if the return effect happens to be 
exactly 1.0 or -1.0.) 

6.11   Possible output from the unstable amplifying loop: 
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Graph of a possible output signal at X from the unstable “control” loop: 

 

The growth produced by unstable amplification is still exponential but now 
explosively so. Similarly, the changes produced by an unstable loop with a 
negative return effect still conform to an underlying sinusoidal curve but now the 
swings become wilder with time. 

The stability characteristics of a system with multiple loops cannot be 
discerned by examining the stability of each loop in isolation, as illustrated 
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by an example to follow. The stability question can be answered if all the 
system’s structural and time parameters are known. However, the required 
analyses involve advanced mathematical treatment of the system’s transfer 
function. 

Unstable processes never last long (though the meaning of “long” depends on 
the time scale of the system being examined—seconds for electronic equipment, 
centuries, perhaps, for societies). This is a matter of material necessity, as can be 
seen by viewing the value of a variable as the rate of certain events occurring on 
a lower level—a perspective introduced in Chapter 1. When a variable takes on 
an extreme value, the lower level operators are being worked near their 
limitations. Thereafter no further increases in rates of lower level events are 
possible because the lower level operators can do no more. At this point there are 
two possibilities. Relations among system variables may become nonlinear—a 
change in one variable no longer has the usual effects on other variables—which 
in effect stops the explosive process. Alternatively, the lower level operators may 
begin failing, in which case all processing falters and the system collapses. 

Instability is almost always considered a serious problem and something to be 
avoided. A system grinding on at the limits of its capacity is no longer adaptive; 
variations in input signals can no longer be responded to differentially. Such a 
system amounts to an insensitive and useless devourer of energy. The 
inconveniences of the alternative possibility of collapse are obvious, especially if 
one’s own social-ecological system is being considered. Thus, if a system is 
unstable, it is useless or doomed until and unless the instability is eliminated. One 
way of solving the problem is to reorganize the system to eliminate the unstable 
loop or loops. The second fundamental method is to add higher order control 
loops that counteract the instability produced by lower order loops. 

Higher Order Feedback 

A nest of loops creates higher order feedback when the return times for the 
various loops in the nest are different (a “return time” is the time required to 
complete one cycle). Higher order feedback produces additional complica-
tions in output signals. All the possibilities cannot be discussed here, but it is 
useful to consider a few examples to appreciate the diversity in output signals 
that may be obtained merely by adding a second-order loop. The 
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simple second-order system shown in 6.12 is used to generate illustrative 
materials by applying a step function input at W and examining the output signal 
at Y. 

 

 

 

6.12    The following is a simple system with second-order feedback (the 
 vertical arrows might represent communication operations): 

All coefficients except a and b have been set at 1.0 for heuristic purposes. 
The signs of a and b can be made either + or – to create different types of 
systems. The above can be reduced to 

which corresponds to the “difference equation” 

in which subscripts indicate the time at which a variable is observed; for 
example, the value of Y at time eight equals a times Y at time four, plus b 
times Y at time zero, plus the value of W at time four. 

To generate example output signals from this second-order system the absolute 
value of a was set at ½ and of b at ¾. The values of all variables were 
 



221 Simple System Dynamics  

presumed to be zero before time zero, when W was increased one unit and held 
there. The signs of a and b were varied to create the following kinds of system: a 
positive and b positive—first and second-order amplification; a positive and b 
negative—first-order amplification with second-order control; a negative and b 
positive—first-order control and second-order amplification; both a and b 
negative—first- and second-order control. Output signals were obtained by 
substituting each set of a and b values into the difference equation in 6.12 and 
then applying the formula repeatedly to generate sequential values of Y. The 
calculating details are tedious and only the graphed results are given in 6.13. 

6.13   EXAMPLE OUTPUT SIGNALS FROM SECOND-ORDER SYSTEMS 

First- and second-order amplification: 

 

 



 222 Dynamic Considerations 

First-order control, second-order amplification: 

 

First-order amplification, second-order control: 

 

 

First- and second-order control: 
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The first two graphs in 6.13 illustrate the important point that second-order 
amplification may create unexpected instabilities. The last two graphs display the 
complicated output signals that are often produced by the presence of higher 
order control. 

The second graph deserves particular attention because it illustrates how 
system dynamics may be nonintuitive. The system consists of a first-order control 
loop and a second-order amplifying loop, the combination of which produces 
unstable oscillation. This result might be considered surprising for three reasons. 
First, either of the two loops would be completely stable in isolation. The 
instability occurs only when they are connected hierarchically, with the amplifier 
at the second level. Second, the creation of such a system might seem completely 
rational in everyday life; for example, work-group norms may be holding 
productivity within a restricted range (the first-order control loop), so 
management superimposes its own incentive program (the second-order 
amplifier); but if the management reaction to productivity is only half as fast as 
the work-group response the results could be far different than desired, as the 
graph shows. Third, a static formulation of the system would give no hint of its 
dynamic instability. Indeed, in the static formulation of the system (which can be 
obtained by removing all the z’s from the diagram in 6.12), it would appear that 
the two loops largely cancel one another, with the amplifier dominating 
somewhat. The instability can be predicted only when we have information on 
time lags and know, in particular, that the amplification operation takes twice as 
long as the control operation. 

Complex Inputs 

In the preceding examples the characteristics of system output signals were 
examined when a simple step change in value was applied at a single input 
variable. The results showed a variety of output signals whose complexity 
depended on the system being considered. Now it is time to acknowledge that 
changes in inputs do not always conform to simple step functions. Indeed, in 
many social systems such input variation may be the exception rather than the 
normal case. Moreover, most interesting systems have multiple source variables 
rather than just a single input. 

Even the simplest system can produce a complicated output signal if it is 
operating on a complicated input signal. This is illustrated by assigning an 
intricate input signal to the single-operator system defined in 6.4. The result is an 
equally intricate output signal that shows the same pattern of changes 
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as the input, though delayed to later points in time and somewhat attenuated by 
the system operation. 

 

6.14   Possible input and output for the system in 6.4. 

If a simple system sums the values of two input variables to produce its outcome, 
the output signal typically will not correspond to either input signal but to a 
weighted average of both. Although we ordinarily expect such an output to be 
more complicated than either of the inputs, it is also possible for the output signal 
to have a simpler pattern of variations if the two inputs tend to cancel each other. 
(This is the basic idea employed by engineers in designing signal “filters”—to get 
rid of any unwanted signal pattern generate a complementary pattern and add.) 

A feedback system operates on a complex input signal in a convoluted way to 
produce an output signal that may have little obvious similarity to either the input 
signal or to the system’s step-function response. This is because the system 
responds to every change in the input signal with a whole sequence of 
adjustments. Therefore the output at any instant is not a singular outcome but 
instead represents the accumulation of system responses to all of the preceding 
changes in input (the more recent responses being weighted more in a stable 
system). Obviously, if a feedback system has multiple inputs, the output signals 
would be even more complex functions of the inputs and the system’s 
characteristics. 

Despite these complications, linear systems of any degree of intricacy 
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retain a provocative feature. If we have a full description of the input signals and 
a full description of the system, it is possible to derive a full description of the 
output signal. Thus dynamic system analysis remains a determinate discipline. 
Perhaps it is even more significant that any two of the three descriptions (i.e., of 
input signals, of output signals, or of the system’s response characteristics) can be 
used to derive the third. This principle provides a foundation for methods of 
system identification using over-time data, and such techniques supplement the 
static methods discussed in Chapter 5. The same principle allows characterization 
of past input signals from knowledge of a system and its outputs, a fact that is 
fundamental in communications (allowing us to reconstruct the thoughts of others 
from what we see or hear) and might permit social analysts to do historical 
reconstructions of some variables by using their knowledge of a given social 
system and its outcome events. (.It must be noted, however, that valuable 
descriptions of signals and systems usually are mathematical expressions and that 
rather complicated mathematical procedures are routinely involved in such 
derivations. ) 

System identification from over-time data is too complex a topic to broach 
here (see chapter references) but one general point deserves attention. Such 
identification is possible only when there is knowledge of both the input and the 
output signals. When dealing with personality or social systems, laymen and 
scholars alike are sometimes guilty of diagnosing system ills only in terms of 
outcomes that have been produced. Similarly, it is frequently presumed that 
studying only a system’s products—its behavioral career or its historical record—
permits discerning its structure, the “implied” personality or the “necessary” 
social organization. When such analyses are reported, assumptions about 
environmental inputs have been made implicitly or the conclusions are 
untrustworthy. Historical study of a system’s outputs permits inferences 
concerning the system’s structure only when the record of inputs is considered 
simultaneously, and then somewhat complex analyses may be required to 
disentangle the data. 

DYNAMIC CONFOUNDING IN STATIC ANALYSES 

Having considered a few elementary features of system dynamics, we can now 
turn to a related issue of practical significance for contemporary social science. 
In what ways is cross-sectional research on static models confounded 
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by systems in a transition phase rather than in steady state at the time of 
observation? It is convenient to divide the problem into two aspects. First, we 
consider systems that have not yet completed their response to a set of inputs 
which is being maintained at constant levels. Second, we consider systems that 
are continuously dynamic because some of their inputs vary over time. 

Equilibration 

In cross-sectional research data are collected on multiple instances of the same
system by measuring values of system variables for each case at a particular time.
Inputs presumably have been set at different levels for different cases, and
outcome variables will also display variations across cases. Consequently the
patterns of variations over variables and across cases should reveal the workings
of the system. There is a waiting period, however, after system inputs have been
set before related consequences can be observed. If observations are made too
soon, the outcome variables may show little or no relation to values of the inputs
because system operators have not yet had a chance to complete their work. 

The problem can be seen in simple form by reconsidering the system in 6.4 in
which there are two variables X and Y and an operator that produces its effect
after a lag of two time periods. Suppose that input X is set at a new value for all
cases at time zero. Clearly, there is no sense in observing the values of the two
system variables at time one because at that point X has its new values, whereas Y
still has its old values (which are responses to the preceding values of X). Only by
waiting at least until time two, when the dynamics are over and the cases are
“equilibrated,” is it possible to observe values of X and values of Y that are
meaningfully related by the causal operation. Thus all observed cases must be
equilibrated if cross-sectional analyses are to be meaningful. 

An individual case is ready for observation when it has completed all
responses to the given inputs and thereby reached a state of equilibrium.
Although there is always a period after inputs have been set during which a case
is not ready for static analysis, once a case has equilibrated it remains in
equilibrium until its inputs are reset. Consequently all equilibrated cases may be
considered together in the same analysis; they do not need to have had their
inputs set at exactly the same time. 
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Equilibration Time 

The length of time required for equilibration depends on the lag periods of 
individual operators in the system. Equilibration time, however, may be 
considerably more than the lag periods for separate operators in systems with 
chains of effects or feedback loops. 

Cross-sectional observations of recursive systems have to be delayed until the 
repercussions of the given outputs have had a chance to cascade over the longest 
path in the system. “Middle” variables in a system cannot be treated simply as 
inputs for following variables, ignoring dynamic processes in prior variables. 
Unless the system as a whole has equilibrated, the settings of the “middle” 
variables may change before their causal effects are observed. 

This can be illustrated by a simple chain system: W → X → Y, where each 
causal link is associated with a lag of one time period. Suppose W is reset in a 
sample of cases at time zero and held constant thereafter. Observations made at 
time one are adequate for estimating the effect from W to X because the values of 
W have been maintained through time one and the values of X are the effects 
produced by these same values of W at time zero. The observations at time one 
are not adequate for studying the X → Y relation. The observed values of Y are 
responses to the values of X at time zero but those values of X have not been 
maintained through time one. Indeed, the observed values of X at time one have 
no logical relation to the time-one values of Y. On the other hand, if observations 
are delayed until time two, both relations in the system can be studied. The values 
of W and X continue the same as they were at time one and the W → X effect can 
be estimated as before; and the Y values are responses to X values at time one, 
which have been maintained through time two, so the X → Y effect can also be 
estimated. 

The matter of equilibration time is complicated when a system contains 
feedbacks because theoretically loops keep adjusting indefinitely. This might 
suggest that such cases never equilibrate because they never finish developing the 
consequences of a given input. It was pointed out earlier, however, that the 
adjustments produced by a stable loop are completed for all practical purposes in 
a relatively short time. Thus a period generally can be defined after which a 
stable feedback system is essentially static in the sense that observations made 
after that period give parameter estimates containing errors less than some 
tolerable amount. The tolerable amount of error would be an arbitrary 
quantity that might vary for different purposes, but theoretically 
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it can be set as small as desired. It is in this practical sense that static analyses of 
feedback systems are feasible. 

Analyses of a feedback system to illustrate how cross-sectional studies after a 
change in inputs lead to errors in parameter estimates are presented in 6.15. The 
system in 6.15 is simple and the results complicated, but even so it permits some 
insight into the main features of equilibration when dealing with feedback 
systems. 

 

6.15   Suppose we want to estimate parameters in the following system: 

 

This specification yields the following difference equations (assuming 
heuristically that Y and Z have no disturbances): 

We assume that the system is in a static state before time one and in 
particular that Xi = X0 for i < 0. 
Then at time one X is changed to a new value which is maintained 
thereafter so that Xi = Xl for i > 1. Because of the causal lags, the value of 
Y will not be affected by the change in X until time two and the value of Z 
will not be affected until time three. Therefore before these times Y and Z 
will be dependent solely on X0 : 

 

These specifications allow us to write the following formulas to express 
the value of the outcome variables at various times: 
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Given data on a cohort of cases, we might estimate the value of parameter 
b by using the formula in 5.12: 

 

To apply this formula at different times after the change in X we must 
obtain the expressions for the covariances at times two, three, four, etc. 
(using procedures like those outlined in 4.17). The results are as follows: 
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Thus the estimates of b from data collected at these times (after
simplifying) would be 

 

What seems to be a serendipitous result needs to be examined first. It would 
appear that if we choose our timing right we could obtain unbiased estimates of 
loop parameters even while the system was quite unequilibrated. In 6.15 the 
estimate of b is exactly right at times three and five. The trouble is that we 
typically would not know if our observations were being made at the “right” time 
because the necessary information about causal lags in the system was 
unavailable. Thus estimates derived from such unequilibrated cases might be 
biased or unbiased, but we would not know which. Moreover, in a more 
complicated system with multiple inputs and multiple loops such opportune times 
for making observations frequently would not even exist. 

The fact that the unbiased estimate appears at intermittent times is significant. 
It reveals that observations of unequilibrated cases can yield parameter estimates 
that are extremely erratic. Repeated examination of the same cohort of cases 
during its early period of development might suggest that the system itself is 
nonstationary, its parameters in a state of flux or oscillation. This nonstationarity 
is not real but is caused by errors in estimation, and we want to eliminate 
unequilibrated cases from analyses to avoid precisely such problems. Moreover, 
the same fact suggests that conservatism is warranted in deciding whether a 
system has become nonstationary. When sequential cross-sectional analyses of a 
system suggest that a system has become time varying, it is possible that the 
system remains stationary but inputs have shifted so that cases are unequilibrated. 
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Errors in estimating the parameters of a stable feedback system from cross-
sectional data are reduced by waiting until the system has gone through a larger 
number of cycles of adjustment following a step change in inputs. The results in 
6.15 clearly indicate that improvement is not necessarily monotonic (because in 
that example, b could be estimated without error at times three and five). On the 
other hand, the worst possible error does decrease with time. This can be seen for 
the system in 6.15 by assigning convenient values to the key unknowns and then 
examining the value of the estimate at different times; for example, if (b·c) = .5, 
σX(0)X(1) = .0, σX(1)

2 = 1.0; then the bracketed quantity equals .0 at time two, .67 at 
time three, and .86 at time five. The decreasing difference between these numbers 
and 1.0 indicates that the maximum error in estimating b is smaller at later times. 

The number of cycles required for equilibration varies somewhat across 
systems and in different circumstances. The closer loop return effects are to zero, 
the faster the estimation errors decline, and systems with powerful feedback have 
longer equilibration times. Also, the results in 6.15 show that biases in the 
estimate depend on the statistical quantities σX(1)

2 and σX(0)X(1). Although detailed 
interpretations of these effects are involved, one important result can be stated 
simply. The greater the changes that have been made in inputs, the longer it takes 
for cases to equilibrate again. 

Time-Varying Inputs 

The logic of estimating structural coefficients from cross-sectional data requires 
that the values of inputs be maintained at constant levels. In natural situations, 
however, the values of inputs often do not remain perfectly stable over time. The 
values of an effect, Y, corresponding to values of a cause, X, may be observed at a 
given time, but the relevant values of X occurred in the past and may no longer be 
observable when their Y effects appear. Consequently the cross-sectional data do 
not contain the necessary information for a static analysis. They do not reveal 
accurately how present values of Y relate to values of X. 

If the values of inputs are totally unpredictable from one instant to another, 
there is no possibility of meaningful parameter estimation from cross-sectional 
data, but in many actual situations matters are not so bleak. For example, 
the graph of the time-varying input X in 6.14 shows that although X does 
move about it still tends to stay within a limited range. It maintains 
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an “essentially constant” average value over time. In fact, the same is true of the 
outcome Y. It also maintains an essentially constant average value over time. 
Moreover, it appears that the Y average is related to the X average by the 
structural coefficient for the causal relationship (.5 in this example). 

Let us say that X in 6.14 is an essentially constant signal with a time-varying 
signal superimposed. Thus an observation of X at any instant usually does not 
measure the average value of X directly but with some amount of error. Of 
course, X’s superimposed noise signal is not error in the usual sense—it does 
produce variations in Y. But the time-varying component does not affect Y until 
after we have completed an observation, so for practical purposes the temporal 
variation in X might be treated as if it were just “measurement error.” By taking 
this perspective we confront a more familiar problem: estimating system 
parameters when variables are measured imprecisely. 

Two basic suppositions here are that the X signal can be partitioned into two 
components—one constant and one time-varying—and that they can be analyzed 
independently to reveal the structure of the system. In fact, it can be demonstrated 
mathematically that any signal may be partitioned into a summation of 
component signals, including, particularly, a constant component. It can also be 
shown that an output signal produced by a linear system operating on a composite 
input signal equals the sum of output signals from identical systems operating on 
the components of that composite input signal. Proofs of both principles are 
provided in texts on system dynamics (see chapter references). Thus there is 
justification for attempting to identify a system’s structure by analyzing the 
constant component of the input signal. The same structure is identified by 
analyzing this constant component as would be identified were we to deal with 
the full input signal in all its complexity. 

By this reasoning the problem of time-varying input signals can be translated 
to a problem of predetermined variables measured with error, assuming the 
constant components of signals vary across cases. Then the problem of time-
varying inputs can be attacked in several ways. First, because the constant 
components of signals amount to averages over time, we could actually 
extend the research design to include repeated observations of the inputs, 
which then could be averaged. Of course, such a design is not really “cross-
sectional,” and a considerable number of longitudinal observations on the 
inputs are required to obtain precise measures of the temporal mean. Note, 
however, that it is not necessary to obtain repeated observations on 
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the outcome variables. Their temporal fluctuations merely constitute 
“disturbances” that do not bias parameter estimates. Moreover, repeated 
observations of the inputs could be made after the outcomes have been measured, 
as long as it can be presumed that the average values of the inputs remain 
unchanged. 

Sometimes environments can be manipulated to set the constant component of 
a variable at a particular level for all members of a population exposed to that 
environment. In such a case the value of the constant component might be 
estimated from the mean of a cross section of observations; for example, an 
attitude stimulus might be presented to the members of a homogeneous group 
during interviews and a measure made of their attitudinal responses. The constant 
component of the attitude toward the stimulus characterizing any member of the 
group could then be estimated from the mean of the measurements over all group 
members, thus allowing individuals’ transients to cancel one another. The 
requirements for employing this tactic are a standard generating element in the 
environment (e.g., the attitudinal stimulus), assurance that all observed units are 
effectively exposed to the generator (e.g., by presenting it explicitly during an 
interview), assurance that all units are equivalent in response (e.g., by studying 
only members of a homogeneous group), and lack of synchronization in 
transients (which might be handled in an attitudinal survey by varying the times, 
circumstances, and demand characteristics of interviews). 

Somewhat similar procedures are the basis of “ecological correlation” in which 
geographic populations are used to obtain a set of mean values on each of several 
variables so that the relations of the variables can be analyzed. The problems with 
the geographical approach to aggregation are that the population in a region may 
not be homogeneous, all members may not be exposed uniformly to standard 
generating elements, and members may be synchronized in transients at a 
particular time. In addition, because a generating factor is implicitly assumed but 
often completely unspecified, there can be little confidence that a given factor 
sets the values of just one of the variables being studied. If the same generator is 
a factor in several variables, the observed correlations between the variables 
would be spurious to some degree. Detailed discussions of aggregation and 
ecological correlation are cited in the chapter references. 

A third approach is the familiar strategy of using instrumental variables 
when confronted with an imperfectly measured source variable; that is, for 
each of the fluctuating inputs we find another variable that is a predictor of 
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its average value over time (and is causally unrelated to system outcomes except 
through that input). Thus by moving the set of input variables back one step it is 
possible to obtain unbiased estimates of all the structural coefficients of interest 
despite the time-varying inputs. The selection of instruments was discussed at 
length in Chapter 5, and the same principles apply here, with the understanding 
that values of an instrument should correlate with the constant component of an 
input signal but not with the time-varying component. 

Dynamics of Lagged Variables 

Sometimes it is possible to construct an instrument from lagged observations 
on the input variable itself. Although this tactic is a common one, its applicability 
is restricted to special circumstances, as illustrated in 6.16 (and by the discussion 
of lagged variables as instruments in Chapter 5). 

6.16   Given the following simple static model 

 

the variable Y can be expressed as a function of a time series of X values: 

 

 

Where , it being assumed heuristically that the disturbances foaai =∑
−∞

=0i
r 

Y are constant over time. The assumption that the X series has an 
“essentially constant” component means that the value of X at any time k 
can be expressed as follows: 

where E(x) = 0. With this definition Yt becomes 

 

Suppose we observe values of X at some earlier time (t - k). Assume also 
that variations in the constant component of X are uncorrelated 
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with the time-varying variations in X and that the disturbances of Y are 
uncorrelated with X. Then 

 

If Xt-k were used as an instrument, an estimate of coefficient a would be 

 

This would provide an unbiased estimate of the structural parameter if the 
effect from X to Y occurred all at once so that at = 0 for all but one value of 
i. However, the estimate would be biased in the more general case in 
which the effects of X on Y are distributed over time, unless the time-
varying component of X has zero autocorrelation and the timing of the 
lagged observation is chosen such that ak = 0. 

Thus observations on an input variable at a different time should not be employed 
as an instrument unless (a) causal effects occur all at once or, if causal effects are 
distributed over time, (b) the time-varying component of the input signal is 
completely unpredictable from one time to another. If the latter case held, we 
would still have to be sure that the period between measurement of the dependent 
variable and the instrumental variable did not correspond to any causal lag period 
between the source and outcome. 

Static and Dynamic Variance 

Structural coefficients for a system that is essentially static, in the sense that its 
variables are maintained at constant average values over time, can be estimated 
from cross-sectional data by using the techniques noted above. However, an 
accurate assessment of disturbances in the dependent variables is not obtained 
ordinarily when inputs have time-varying components because unexplained 
variance in a dependent variable represents not only the effects of unspecified 
variables (i.e., the usual disturbances) but also lagged effects from the time-
varying components of the specified inputs. Theoretically, the latter would be 
explained by the model if it were applied dynamically. 
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Suppose, for example, that engaging in creative work causes a person to 
become more liberal (as proposed in the sociological literature). Because of 
differing occupations, individuals vary in the average amount of creative work 
they do, and because of this essentially constant component in the source variable 
there is variance among persons. This perhaps could be used to estimate the 
structural coefficient relating creative work to liberalism. On the other hand, the 
amount of creative work done by an individual may vary considerably on a week-
to-week or month-to-month basis because of shifting job demands, demands of 
personal life, or changes in mood. These fluctuations should also affect 
liberalism. Indeed, the net effect of such temporal variation in level of creative 
work is defined by the same structural coefficient that can be estimated from the 
constant component in the data. Nevertheless, if the effect occurs only after a lag, 
the time-varying component of liberalism will appear to be unexplained in a 
cross-sectional study. By the time liberalism has adapted to a level of creative 
work the level of creative work may have shifted to another level, so an 
individual’s liberalism might be out of line with the source variable because it 
reflects the effect of a past level of creative work. Given just the observation at 
that single time we cannot distinguish this accountable deviation from a 
disturbance caused by completely extraneous and unspecified sources. Thus the 
variation in the dependent variable that is due to past fluctuations in the source 
variable is grouped with the variation due to unspecified disturbances, and the 
specified causal relation seems to explain less of the variation in the dependent 
variable than it really does. 

This problem is severer in simpler systems. If we have a single causal relation 
with lag, the time-varying component of the input signal will be transmitted with 
considerable fidelity to the outcome variable. A more elaborate recursive system 
in which outputs are a response to input signals at several points in time generates 
overtime averages of the input signals, thereby beginning to eliminate their 
fluctuations. Consequently the outcomes contain less variance due to input 
fluctuations. The output from a feedback loop at any given time is always a 
weighted average of the past values of inputs. Therefore the effects from the time-
varying components of the inputs tend to be averaged out, and the outcome 
variance is only moderately affected by fluctuations in input signals. Even with 
stable feedback systems, however, there will generally be some dynamic variance 
in outcomes associated with the most recent fluctuations in inputs. 

By the same reasoning a system that accounts for most of the variations in 
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its outcome variables under static conditions may seem to provide a less adequate
model if inputs go into flux. Indeed, if the transient variation in inputs becomes
considerably larger than the constant variation across cases, the system
formulation may seem to lose nearly all its explanatory power. Yet it is
conceivable, and even probable in such circumstances, that the system continues
to determine most of the variation in outcomes. Using cross-sectional data alone,
the problem is that we cannot distinguish the transient variation in outcomes from
the unaccountable disturbances. 

The inputs to many social systems probably have some time-varying
components. Consequently theoretical models—especially simpler models—may
be undervalued because of their poor performance in explaining variance in
cross-sectional data. Thus, even though structural coefficients can be estimated
from cross-sectional studies, we may eventually have to turn to experimental,
longitudinal, and simulation studies in which explicit consideration is given to
time in order to identify dynamic aspects of system structure and to evaluate
theories with confidence. 

SOURCES AND ADDITIONAL READINGS 

An elementary treatment of systems dynamics is provided by Alpha C. Chiang, 
Fundamental Methods of Mathematical Economics (New York: McGraw-Hill, 
1967), especially parts 3 and 5. James A. Cadzow, Discrete Time Systems: An 
Introduction With Interdisciplinary Applications (Englewood Cliffs, N.J.: 
Prentice-Hall, 1973) is a rewarding text that deals with more advanced topics; 
like all texts on systems dynamics, it involves mathematics, but Cadzow depends 
on elementary algebra and makes a conscientious effort to address beginning 
students. Methods of extending flowgraph analysis into the dynamic realm are 
presented (along with examples) by W. H. Huggins and Doris R. Entwisle, 
Introductory Systems and Design (Waltham, Mass.: Blaisdell, 1968). 

The statistical analysis of time series, for the sake of projections and system 
identification, is examined in Gwilym M. Jenkins and Donald G. Watts, 
Spectral Analysis and Its Applications (San Francisco; Holden-Day, 1968), 
and George E. P. Box and G. M. Jenkins, Time Series Analysis: Forecasting 
and Control (San Francisco: Holden-Day, 1970). Brief introductions to the 
same topics are available in Douglas A. Hibbs, Jr., “Problems of Statistical 
Estimation and Causal Inference in Time-Series Regression Models,” and 
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Thomas F. Mayer and William Ray Arney, “Spectral Analysis and the Study of 
Social Change,” Chapters 10 and 11, respectively, in Herbert L. Costner, Ed., 
Sociological Methodology: 1973-1974 (San Francisco: Jossey-Bass, 1974). 
Daniel Graupe, Identification of Systems (New York: Van Nostrand Reinhold, 
1972) provides an advanced treatment of methods used in engineering. 

Recently psychologists have been developing models to describe growth 
curves from data on cohorts. Some major issues in this area are surveyed in John 
R. Nesselroade and Hayne W. Reese, Eds., Life-Span Developmental Psychology: 
Methodological Issues (New York: Academic, 1973). A variety of sociological 
time series are described and analyzed in Robert L. Hamblin, R. Brooke 
Jacobsen, and Jerry L. L. Miller, A Mathematical Theory of Social Change (New 
York: Wiley, 1973). 

Aggregation procedures are discussed in Mattei Dogan and Stein Rokkan Eds., 
Quantitative Ecological Analysis in the Social Sciences (Cambridge, Mass., MIT 
Press, 1969), and Michael T. Hannan, Aggregation and Disaggregation in 
Sociology (Lexington, Mass.: Heath, 1971). 

EXERCISES 

1. Consider a specific sociological topic such as attitude-balance theory, 
sociometric analysis, or modernization. The amount of research (R) on the topic 
in a given year might be measured as the total number of researchers who have 
devoted some minimal amount of time to the topic. The total number of 
publications (P) in a year is roughly proportional to the amount of research on the 
topic about three years before (allowing time for manuscript preparation and 
publication lag). Publications tend to generate more research, at least after about 
two years (allowing time for readers to discover the articles and set up projects of 
their own). Meanwhile, federal policy directing funds (F) to the topic increases 
research, allowing about two years to broadcast the policy and for preparation 
and processing of proposals. Availability of federal funds may be influenced by 
an assessment of whether grants will be identified with future publications. 
Assuming this to be true, federal funding might be proportional to the 
rate of growth (G) of literature on the topic—measured, say, as the 
difference between the number of publications last year and the 
number five years ago. Finally it might be supposed that a major 
source of new research on a topic is the innovation (I) of a new 
 



 Exercises 239 

idea, technique, or perspective from a largely unrelated area of study. The input 
itself is probably best viewed as a relatively short-lived impulse which has to be 
sustained by activity within the new field of application. More important 
innovations (having larger values of I) would be those generating a larger amount 
of research a year or so after introduction. 

(a) Make up the flowgraph for this system. (The change score G can be 
represented on the linear graph.) Represent each structural coefficient as a 
subscripted a, give its sign in parentheses, and follow with the delay operator 
properly superscripted; for example, the label for one arrow would be aRI(+)z -l. 
Ignore disturbances. 

(b) From an examination of the diagram describe manifest and latent functions 
of federal funding agencies for the development of scientific literature on a topic. 

(c) What is the shortest period that must pass before research being done now 
will stimulate new research? 

 
2. For heuristic purposes let the absolute value of each coefficient in the system 
in exercise 1 equal 1.0. 

(a) Redraw a reduced flowgraph in which variable G is eliminated. 
(b) Write out the difference equations that define the dynamic system; for 

example: 

 

(c) Use the difference equations to trace the 20-year impact of a unit impulse 
in I at time zero (that is, I has a value of 1.0 at t0 and a value of zero thereafter). 
Assume that R, P, and F are measured as deviation scores and that the topic has 
had “average” attention, publications, and funding in the last few years, reflected 
by assigning values of zero to all variables (except I) at t0 and relevant years 
before. The values of the variables at t0 and one year after are shown below for 
guidance. 

Time I R P F 
0 1 0 0 0 
1 0 1 0 0 

3. Suppose that the following dynamic model represents the over-time relations 
of a person’s education (E), occupational level (Q), yearly income (I), and 
savings (S), with disturbances ignored. 
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that is, education determines occupational level, which has a direct effect on
income, and yearly income creates small increases in savings. The loop on Q
suggests that about every four years promotions increase occupational level. The
loop on I indicates that a person receives a base rate of pay corresponding to
occupational level plus a percentage of last year’s income. The loop on S
indicates that savings and real property are maintained and incremented by
interest, dividends, or appreciation. Assume that t = 0 is the year in which formal
education and training are completed and that the variables have the following
values at that time: 

E0:  to be specified. 
Q0: dependent on E0; zero before t = 0. 

 I0: dependent on Q0; zero before t = 0. 
S0:  dependent on I0; to represent educational and home-establishment 

debts we also make it dependent on E0: 

 (a) Write the difference equations that express the value of each variable 
in terms of present and past values of variables in the system. 
 (b) Following is the equation for Q at (t - 4): 

 

Substitute this equation into the equation for Qt to get another expression for the 
value of Q at time t. How far could such substitutions be carried? Does this 
provide another way of representing the loop on Q? 

(c) Assume that education is set at 10.0 at time zero and remains the same 
thereafter. Use the three difference equations to trace the growth of Q, I, and S 
over 15 years. (Remember the debts.) A desk calculator will be helpful here. 
Now assume that education is set at 1.0 at time zero and remains the same 
thereafter. Calculate the values of the variables over 25 years. This is tedious, but 
the results are instructive and are used below. (Answers are not provided for this 
second analysis.) 

(d) Suppose that a level 10 education is a Ph.D. and that this is ordinarily 
acquired at age 26. Suppose a level 1 education represents the two years of high 
school attained at age 16. At what age does a doctor catch up in savings 
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with a high school dropout, given the above system? Does a doctor ever acquire 
significantly greater savings than a high school dropout? 
4. We continue with the system defined in exercise 3. Now suppose that more 
education leads to dissatisfaction with the establishment, whereas more 
occupational status, more income, and more savings all lead to pro-establishment 
attitudes. In particular, suppose for heuristic purposes that attitude toward the 
establishment is determined as follows: 

 

(It is assumed that these effects on attitude are almost instantaneous.) 
    (a) Graph the establishment attitudes from age 26 to age 40 of a Ph.D. and of a 
high school dropout (use results from exercise 3). 
    (b) Suggest the kind of population (defined in terms of age, education, 
occupational level, etc.) in which one is most likely to find an anarchist, a 
“progressive” or liberal, and a conservative. Are lower class persons likely to be 
radical (right or left) in their youth? In their old age? 
5.  Consider the following simplified “class-conflict” system in which 
coefficients have been assigned arbitrary values and disturbances ignored: 

 

By this specification production surpluses (P) increase social inequality (I). The 
effect is almost instantaneous, compared with the time scale of other operations 
in the system (this is a heuristic simplification). An increase in social inequality 
generates legislation favoring the privileged (L), allowing a time lag for the 
privileged class to manipulate the composition and opinions of those in power 
roles. Such legislation also increases social inequality, again allowing time for 
socially exploitative projects to be planned and implemented. On the other hand, 
a large increase in discriminatory laws increases civil disturbance (D), once 
comprehension of the laws diffuses to the masses. Those in positions of power 
are quick to respond to such threats to social order by moderating the form or 
administration of the laws to make them less inflammatory. 

Flowgraph analysis can be used to find the transfer function from P to each of 
the system variables; for example, in the case of I we would get the first 
expression below, which can be manipulated algebraically as shown. 
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The last expression is a “partial-fraction expansion” of the transfer function (see 
chapter references for the method involved). It indicates that as far as I is 
concerned the original system could be replaced with the sum of two simpler 
systems and the results would be exactly the same. Moreover, we can 
immediately see that both simpler systems are stable—the return effects of the 
single loop in each is between -1.0 and + 1.0. Thus we now know that the 
original system is stable. The last expression allows us to employ the notion of a 
“z transform” from advanced systems theory (again see references). Application 
of the z transform gives us an expression for the value of I in terms of present and 
past values of P: 

 

By the same procedures 

 

(where δ = 1 when i = 0 and is zero otherwise) 

 

In all these summations the coefficients for terms beyond Pt-5 are zero when 
rounded to two places. 

(a) Use the summation formulas above to estimate the values of I, L, and D at 
time zero if P has had a value of 1.0 from time (t - 5) up to and including time t. 

(b) Compare the results obtained in (a) with results you obtain from a static 
analysis of the same system, again assuming that P has a constant 
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value of 1.0. What can you conclude about the equilibration time for this system? 
 
6. Over-time configurations of change in a single variable are of fundamental 
interest in the study of physical systems; for example, mechanical vibrations with 
a particular configuration over time generate a characteristic sound, a fact that is 
of basic importance in engineering. In the social sciences significance is more 
likely to be attached to a multivariate configuration of states at a single time or 
over a brief period; for example, it is largely by considering a cross section of a 
society’s events that we decide whether it is industrialized, at war, democratic, 
and so on. Theoretically, however, a multivariate profile of outcomes can always 
be redefined in terms of strictly historical configurations in the system’s inputs. 
Suppose that we define a populist reformation, or revolution, as a period of 
intense civil disturbance, followed soon after by a collapse in social inequality. 
Given the single-input system specified in exercise 5, it is possible to get such a 
reformation only if production surpluses have had a particular historical 
configuration. 

(a) Use the summation formulas in exercise 5 to define what the features of 
this historical configuration must be. (Assume that the definition above requires a 
large value of D-1and a small value for I0). 

(b) As it turns out, reformation, as defined above, is largely an epiphenomenon 
in this system. The collapse of inequality is due more to economic circumstances 
than to preceding civil disturbances. Suppose, instead, that we defined 
reformation as a period of civil disturbance followed by at least two periods 
during which laws favoring the privileged were reduced (D-1 large, L0 and L1 
small). What is the required historical configuration of surpluses now? 

 
7. Attitudes can be viewed as having a relatively stable component, based on 
accumulated socialization, and also a transient component that varies with recent 
experiences. Thus at a particular moment we might represent a person’s net 
attitude toward an object as a summation of the stable and transient components: 

 

If we were to examine the same person a short time later, we would expect the
stable component to be almost the same. The transient component, however,
might have changed and thus the net attitude might also be different. 
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(a) Write the expression for the variance of AN in a cross-sectional study of a
population. Give a verbal interpretation to the components of variance and
indicate some social conditions in which one component might be larger than the
other. 

(b) Modify the above diagram to allow for selective exposure—people
exposing themselves to events that confirm their predispositions. How would this
phenomenon affect the observed variance in the cross-sectional study? 

(c) Give a formula for the correlation between attitude measurements made at
two times with a short interval between. (Ignore the possibility of selective
exposure in your derivation.) What social conditions would produce a relatively
large value for the correlation? Assume that attitudes at the moment determine
behavior toward the attitude object at that time. What social conditions would
enhance the accuracy of predictions from attitudes measured at one time to
behaviors observed later? 
8.  At the end of Chapter 4 it was suggested that attitudes and behaviors might be
related in a control loop. Attitudes determine behaviors but behaviors deviating
from norms invoke social control mechanisms that change attitudes. By
disregarding the directionality of behavior deviation we can reconceptualize this
system in terms of deviations and social punishments: 

that is, deviation from an attitudinal norm produces behavioral deviation, which,
in turn, produces punishment, but we allow that punishments are not regularly
related to deviations by entering the disturbance U. Finally, punishment reduces
attitudinal deviations. (Arbitrary delays have been assigned for heuristic
purposes.) Ignoring attitudes, we could reduce this system to one involving only
behavior deviations and social punishments: 

 

Reduce the system still further to one involving just behavioral deviations and 
disturbances in punishments. Express behavioral deviancy at time t as a function 
of irregularities in punishments at earlier times. What theoretical perspective is 
suggested by the result? 



 

ANSWERS  
TO EXERCISES 

CHAPTER 1 

1. The use of heroin—the later condition—implies the use of marihuana—the 
earlier condition. This statement suggests a developmental process rather than 
causation. A causal relationship could be inferred only if almost all marihuana 
users went on to heroin, and we would still have to specify an operator to account 
for the relationship. 
2. If the privileged acts of a person constitute status, that person is the relevant 
operator. His status might be changed by increasing the material and social 
resources for privileged acts which amounts to a change in inputs, or his 
disposition to construct privileged acts from available resources could be 
increased. This motivational adjustment makes the person a stronger operator for 
converting resources into status. If status is constituted from acts of deference, 
then interaction partners are the operators producing one’s own status. Perhaps 
others defer because they have learned that doing so gains rewards or prevents 
punishments. So we might increase A’s status by taking away the material basis 
of B’s satisfactions, making B more anxious to please A. Alternatively, we might 
teach B to deliver more deference for a given level of need, thus making B a more 
powerful operator for generating status. 
3. Later events cannot cause earlier events (rule I.4). Thus the education and 
occupational statuses of sons do not affect the father variables. If we are willing 
to assume that formal education is almost always completed before a career is 
begun, the same rule would eliminate a causal relation from occupational 
status to education for both fathers and sons. We cannot eliminate the 
possibility of a relation from education to occupational status (for fathers 
or sons). The timing is appropriate and we can think of an explanation for 
such a link, which suggests that operators actually may be available. 
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We are left with relations from the father variables to the son variables, all of 
which pass the time-ordering test. It is conceivable that fathers with higher 
occupational statuses have contacts that directly help their sons to achieve higher 
levels of occupation. Thus, in general, we cannot eliminate the possibility of a 
causal relation. (Note, though, that we might be able to invoke rule I.3 if we were 
studying sons who had migrated beyond their fathers’ fields of influence.) 
Similarly, it is plausible that fathers with higher status occupations have the 
money and influence to ensure better educations for their sons, a link that cannot 
be eliminated. Better educated fathers might give their sons an educational 
advantage in an enriched home environment. Also they might provide better 
guidance in coping with educational institutions. The possibility that father’s 
education directly influences son’s education cannot be disregarded. It is more 
difficult to imagine how a father’s education can directly affect his son’s 
occupational status. Most of the plausible explanations for such a link (e.g., 
father’s contacts) seem actually to be indirect effects that pass through father’s 
occupational status or through son’s education. We might be willing to invoke 
rule I.2 to dismiss the possibility of a direct link here. 

4. On the basis of this extra information, we might invoke rule I.5 to conclude 
that in modern America a father’s occupational status has no direct causal effect 
on his son’s occupational status. 

5. A set of machines is a flow in the sense that each machine has a specific life 
span, and a constant aggregate size can be maintained only if there is 
replenishment. (Of course, the flow must be measured in years rather than 
minutes.) If we assess an air force in terms of number of planes, the force is 
linearly related to its sources—50 planes from the United States and 20 planes 
from Sweden constitutes a force of 70. Even if we used a more sophisticated basis 
of assessment, such as firepower, we would probably still have a linear 
dependence but might have to recognize that gains in firepower are 
proportionately different for planes from different sources. For purposes of 
propaganda, routine surveillance, and combat against an unsophisticated enemy, 
the planes could be treated as a homogeneous aggregate, regardless of their 
source. Logistically, and in battle with a technologically advanced enemy, the 
Swedish and American planes might have to be treated as separate forces. 
6.  The normative level of a variable frequently serves as the practical zero point 
in social systems. When phenomena occur in accordance with norms, 
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people typically react as if nothing were happening at all. The normative zero is 
not a true zero in the sense of indicating an absence of flow. Nevertheless it does 
lead to lack of response in subsequent operators. Similarly, the “negative” values 
below the normative zero do not imply inhibition of positive flow on the original 
variable, but their occurrence may cause some subsequent flows to be inhibited. 
 
7. In the first case advanced education yields antiestablishment attitudes and no 
inhibitory responses are generated by the possession of wealth; presumably such 
a person is radically antiestablishment. In the second case no education effect 
inhibits satisfaction with the establishment produced by money; hence this 
combination should yield a person who is radically proestablishment. In the 
status-consistent person the positive effect of money and the negative effect of 
education tend to cancel, yielding a more or less neutral attitude. Neutrality, 
however, is psychologically different for the poor illiterate person compared with 
someone who is educated and materially comfortable. Presumably the poor 
illiterate person has almost no attitude at all because the states generating 
attitudes toward the establishment are nearly absent. The wealthy educated 
person, however, is neutral because mutually inhibiting feelings are in conflict. 
 
8a. For convenience let us suppose that each of the city’s M families has been 
assigned an index number, i = 1, 2, 3, ..., M, and that variables are abbreviated as 
follows: 

C: City’s level of commerce in year I. 
Si: Family i’s surpluses in year 2. 
Bi: The number of babies born in family i in year 3. 
K: Size of the city’s five-year-old cohort in year 8. 
T: The number of grade school teachers in the city in year 9. 

Assuming a large number of families, it is not practical to draw all the relevant 
chains of arrows. The essentials of the system could be represented as follows. 
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Of course, the diagram represents only selected processes. Family surpluses have 
more sources than the local economic situation; noneconomic factors also affect 
reproduction; the size of K depends on infant mortality and migrations as well as 
on local births five years earlier; the number of grade school teachers is 
determined by the size of all school age cohorts, among other things. Later such 
“disturbances” in causal formulations are considered more explicitly. 

8b. Using the causal approximation, we can define two new variables. 

 L:  The standard of living in the city in year 2. Essentially, this is the average 
level of surplus for all families in the city. 
 N:  The total number of newborns in the city in year 3. This birth index is 
simply the sum of the births in all the city’s families that year. 
 With these two new variables and by employing the notion of a causal 
approximation the system might be represented as follows: 

 

This simplification may be an adequate representation for many policy purposes. 
It might also be a preferred representation for analyses if measures of L and N are 
routinely available. On the other hand, the simplified system yields new 
explanations for events in individual families; for example, why did the Smiths 
enjoy unusual surpluses in year 2? Because the standard of living was 
particularly high that year (i.e., the explanation is not directly in terms of the 
city’s recent commercial boom). Why did the Smiths have two births in year 3? 
Answer: the birth rate was high that year (rather than because the Smiths had 
enjoyed unprecedented surpluses the year before and decided to accelerate their 
family growth). Such explanations may be adequate for some purposes, though 
they tend to conceal the actual operators in the system. 

9. We might represent the relations between different living standards and 
different reproduction rates as follows: 
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Standard Activities Related  Reproduction 
of Living to Reproduction  Rate 
Very high → Seek physician’s help → Very high 
 to enhance fertility   
High → Increased intercourse → High 
 for reproductive purposes   
As expected → Normal sexual activity → Average 
Low → Reduced sexual activity → Low 
Very low → Use of contraceptives → Very low 

At the extremes the relationship between living standard and reproduction rate is 
maintained by invoking new programs of medical or pharmaceutical 
intervention. Such qualitative shifts in operator activity are not found in most 
common machines, in which increased input simply leads to increased operator 
activity, which in turn yields an increase in the output. (According to the 
diagram, sexual behavior does function this way in the middle range.) 

Despite the qualitative shifts in functioning, we could speak of a single 
reproduction operator that presumably maintains a monotonic relationship 
between living standards and birth rates. This functional continuity is the 
important sense in which it can be treated like other operators subject to systems 
analysis. 

 
10a. The described relations create a loop between P and R. 

 

10b. Since an increase in P causes reduction in R, the sign of c must be negative 
(i.e., c < 0). Similarly, because an increase in R causes a decrease in P, the sign 
of d also must be negative. Because both coefficients are negative, their product 
is positive and the loop is an amplifier rather than a controller; that is, any shift in 
population composition will be accentuated rather than attenuated over time by 
the action of the loop. 
10c. If the absolute values of both coefficients are greater than 1.0 and we 
already know their signs are both negative, the product of c and d must be greater 
than 1.0. Thus the initial increase in R will be amplified over and over until the 
size of R is very large. That is not all, however. This is a “double negative” 
amplifier, and the increases in R will be accompanied by ever-growing 
decreases in P. (Trace the causes and effects around the loop for a few 
cycles to see how this happens.) Ultimately P will go to zero and the 
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population will consist entirely of R’s. At that point the loop self-destructs in the 
sense that one of its variables becomes nonexistent. 

CHAPTER 2 

1. The comparison between man A and man B suggests that sons get three 
schoolyears of education per 20 NORCS of father’s occupation. The structural 
coefficient can be defined as 

Note that “son” and “father” are included as part of the units of measurement to 
make clear what variables are being measured. 
2.  If F is father’s status, E is son’s education, and a is the structural coefficient 
relating them, the expected son’s education is a times F, or 

 

 

Thus the man’s son can be expected to achieve about a ninth-grade education.  
3. As noted in Chapter 1 (I.6), a linear structural equation, with its constants 
deleted, can be applied to a change of input as well as to the absolute level of 
input. The structural equation in this case is 

and so the change equation is 

 

Applying this to the particular problem, we have 

 

Thus the father’s misfortune leads to an expected loss of 1.5 school years in
son’s education. 
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4.  By the chain rule (II.8), a son’s occupational level should be 

 
5a. 

5b.  The above reduces to 

 
or 

from which we get the equation 

5c. 

6.  According to the propositions 

d > 0 (i.e., it is positive) 
e > 0 (positive) 
f < 0 (negative) 

The units attached to each coefficient would be as follows (deleting the phrases 
“number of” and “in city” because they always occur). 
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Units for d are units of C per unit of I or 

 

For e we have units of P per unit of C or 

 

For f it is units of C per unit of P or 

 

 

The flowgraph is as follows: 

 

7.  The return effect of the loop in problem 6 is 

Therefore the return effect has no units at all. Since the return effect is unit free, 
it is unaffected by any linear transformation of the measurement scales for 
variables in the loop (such as adding or subtracting a constant or multiplying or 
dividing by a constant). In particular, the procedures used in problem 6 can be 
used to show that if the crime rate is measured as crimes per 1000 dwellers the 
three coefficients can be expressed as follows: 

 

and the return effect of the loop is exactly the same. Thus the return effect is a 
constant way of characterizing the nature of a loop regardless of the units used in 
measuring variables. 
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8a. The minimum income program constitutes an effort to reduce the I 
(impoverished) variable to zero. If the system is correctly specified, this would 
drive the crime rate down (though probably not to zero because undoubtedly 
there are other sources of crime besides the one specified here). By using 
flowgraph analysis it can be shown that this approach to crime reduction leads to 
a reduction in the police ratio as well. 
8b. We might suppose that making the lives of the impoverished more 
comfortable would weaken the causal mechanisms between poverty and crime. If 
so, this program would reduce the size of the d coefficient. By reducing the 
dependency of crime on poverty it would tend to have the same effects discussed 
in answer 8a. 
8c.  Increasing the efficiency and salience of the police presumably enhances 
their deterrent function, thereby magnifying the negative value of coefficient f. In 
effect, this diminishes the relation between crime and poverty as shown in the 
reduced form equation 

 

 

Thus the crime rate will be lower for a given level of poverty. Similarly, the 
change ultimately leads to a lower police ratio for a given level of poverty.  
8d. On a flowgraph we would have to represent the new program by adding a 
variable—federal support of police—and an arrow from this variable to the 
police ratio. 

 

(Coefficient g has a positive sign.) While the program is being instituted, the 
federal-support variable goes from zero to some positive value, which leads in 
turn to an increase in the police ratio and a reduction in the crime rate. These 
effects would be especially noticeable at first. Later, as the system regained 
equilibrium, the crime rate and the police ratio would move back somewhat 
toward their original positions. 
9. Without politicalization the law enforcement system might be represented as 
follows (continuing the assumptions from exercise 6): 

Here S stands for public support at the local level and h is a positive coefficient
that represents the transformation of public support for law enforcement into a
standing police force. Theoretically, crime might be eradicated
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in this system if public support for the police were at a level high enough to 
balance the pressures for crime among the impoverished; that is, if 

 

The problem with the above system is that it is not responsive to major increases 
in crime. The police, with their constant level of support, cannot mobilize to meet 
new demands. Politicalization solves this problem. Strangely, however, the 
creation of a “control” loop between crime and police by politicalization 
guarantees a continuing crime problem—at a low chronic level if the system 
remains stable and linear or in the form of intermittent spurts if on occasion the 
police are able to eliminate crime entirely. This is because politicalization as a 
causal operator also leads to demobilization when the crime rate declines. 
10. Using flowgraph analysis, we see that the relations between crime and its 
major source in the first plan would be 

 

With the second plan the relations would be 

 
Thus we can see that 

 

Because L is a negative number (it is the return effect for a control loop), the 
quantity in parentheses has a value greater than one. Thus the first plan will end 
up with a higher crime rate than the second plan even though the control loops 
are of equal strength. In the language of flowgraphs this result occurs because the 
control loop in plan one does not touch the open path from poverty to crime. 
Consequently it does not have full impact on that relationship. In ordinary 
language, plan one leads to the following process: whenever an increase 
in crime causes the local community to mobilize more police, some of the 
federal support is removed, thereby undercutting the local mobilization. 
Consequently the reaction to a crime wave is always muted. (On the other 
hand, locally inspired decreases in police are somewhat counteracted by 
more federal support. Therefore the loop does exert some control over 
crime by adding police when local support is too low.) On the 
 



255  Answers to Exercises (Chapter 2) 

other hand, federal intervention in plan two directly controls crime rather than 
the strength of local police forces. Its impact on crime is greater. 

11a. 

The structural equations are 

 

11b.  There are five distinct loops: (AR), (RC), (AC), (ARC), and (ACR). Note 
that each loop touches all the others. In specifying the system, it was assumed 
that every operator transforms an increase in one variable into an increase in 
another variable. Consequently all the structural coefficients must have positive 
signs. Because there are no negative coefficients, there can be no control loops 
and all the loops are amplifiers. 

 
11c. 

Because each of the positive return effects is subtracted in the denominator, each 
reduces the size of the denominator and thereby increases the magnitude of TAS(A). 
Taking each loop separately, we see that this happens as follows: a scientific 
advance in America leads to an initial increment in America’s military 
strength by way of military-industrial development (dA). This initial 
increment ultimately is magnified because it sets off a chain of response in 
the other two superpowers. Seeing America’s increased military power, 
Russia has to increase hers, which in turn is viewed by Americans as a threat; 
America must therefore beef up its own forces another increment (loop AR). 
Moreover, Russia’s military expansion is disturbing to the Chinese who feel 
obliged to increase their own military power. This obvious threat to 
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American security demands further expansion of the American military force 
(loop ARC). On the other side, we have similar processes. America’s initial 
increment worries the Chinese into increasing their own forces, a move that 
demands a response by America (loop AC). Moreover, this same Chinese buildup 
forces the Russians to increase their strength again, which is seen as still another 
provocation that demands a strong American response (loop ACR). Of course, 
each of these increments spins further around the system to produce still more 
increments. The final effects are represented in the equation above. Loop (RC) is 
a special case. The initial increment by the Russians causes a Chinese increment, 
which not only disturbs the Americans, it further disturbs the Russians (who after 
all were only responding to an American threat). Thus they must increment their 
power to respond to the Chinese, thereby completing a cycle of loop (RC). 
(Similarly this loop transforms the initial Chinese increment into a Russian 
escalation which must be met by the Chinese.) This dyadic escalation between 
Russia and China has some effects on America because it increases the level of 
provocation from both Russia and China. Thus the return effect of loop (RC) is in 
the denominator of the above equation. On the other hand, the dyadic 
competition between those countries is once removed from America and the loop 
has less impact than if America were involved directly. This is represented by the 
subtraction of the (RC) return effect in the numerator; that is, an adjustment is 
made in the numerator to reflect the fact that the (RC) loop does not operate with 
its full force on America’s military power. 
12.  An f coefficient of no more than..5 implies that when one nation increases its 
military power by a certain amount another nation’s initial reaction is to increase 
its strength by no more than half that amount. A sophisticated scale for 
measuring military power would have to take into account the capacity and 
efficiency of delivery systems besides firepower, but an impression of the 
implication here can be gained from an example that involves a simpler scale: if 
Russia adds 100 tanks to her arsenal, the United States and China in their 
responses must not add more than 50 tanks to their arsenals. This system will 
produce an uncontrolled arms race if nations respond to one another’s moves 
more vigorously. Certainly instability is likely if each nation attempts to match or 
exceed another’s gain. On the other hand, a number of factors could lead to 
attenuated responses that would encourage stability; for example, poor 
intelligence services leading to underestimates of the gains of others, or alliances 
by which two countries share their response to the third. 
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These and other considerations might enter into an overall judgment of the 
system’s stability. 

 

13a. 

13b. Arrows (SAR) and (SAC) imply that advances in American science lead 
directly to more military power for the Russians and Chinese. Perhaps the person 
supposes that espionage is the means by which this happens. Arrows (SRC) and 
(SCR) might be explained similarly or in terms of the alliance and cooperation 
between two communist nations. Note that there are no arrows (SRA) or (SCA): 
America does not spy on or benefit from science in other nations. Arrows (TAR) 
and (TAC) indicate that America’s territory is directly responsible for the 
maintenance of Russian and Chinese arms. Perhaps this would be explained in 
terms of the greed and envy of others and their wish to occupy our land. The 
same kind of acquisitiveness accounts for arrows (TRC) and (TCR). Note that 
America does not prepare to occupy any other nation—there are no arrows (TRA) 
or (TCA). 

Therefore, an American scientific advance naturally would lead directly to a 
stronger American military. However, this in no way is a cause for any Russian 
or Chinese response. What happens is that the Russians and Chinese steal our 
scientific secrets and use them to build their own might. When this happens, 
America of course meets the challenge by incrementing her strength still more. A 
Russian scientific advance would lead to a more powerful Russian military and 
also to a more powerful Chinese military (whether by sharing or spying). 
America would not steal Russian secrets, but she would have to respond directly 
to the Russian and Chinese military escalations. 

The extricated model does make accurate predictions of what happens in 
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the long run. This is its single strength when applied to the international situation. 
On the other hand, it might mislead someone into expecting a simple pattern in 
international dynamics. Also it would be highly misleading in suggesting that 
counterespionage efforts could have a major effect on the character of the 
system. 

CHAPTER 3 

1. Because there is only one president at a time, it is not possible to do the usual 
kind of cross-sectional study in which we examine repeated examples of the 
same operator type. For some purposes it might be satisfactory to assume that a 
president is a constant operator throughout his presidency and each of his 
completed episodes of a given type can be examined as a static configuration 
characterizing that president. The set of all such episodes could be examined 
statistically. This form of analysis has been called “comparative statics.” 
2a. 

 

2b. A strictly linear system could not produce such a joint distribution. The 
disturbances in dwelling size are much greater for low-income families than for 
high-income families and there is no way to achieve this effect with strictly linear 
equations. Such a phenomenon might occur in a causal system if another 
variable—say, size of family—interacted with income to determine dwelling 
size, as suggested in the following equation: 

dwelling size = a·(family income) · (family size) 

According to this formulation, some low-income families are forced to get large
dwellings because their numbers are so large. The distribution can be viewed as
evidence that “high income implies a large dwelling.” To interpret
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this developmentally, however, we would have to suppose that occupying a large 
dwelling is a necessary antecedent for acquiring wealth and that is a dubious 
postulate in most contemporary societies. 
2c. A linear relation is possible if the distributions of both variables are skewed, 
as suggested by the following graph: 

 

3. One way to interpret this problem is to imagine a fleet of buses, each moving 
ideally at a given instant exactly at the safest speed and in the safest direction. 
The drivers, being human, add some perturbations or disturbances to the actual 
speeds and directions, removing each bus more or less from the ideal. A second 
driver would add additional perturbations. Thus, assuming that the actions of the 
drivers are in no way coordinated, disturbance variances due to two drivers would 
create a larger variance than either driver would produce alone. Consequently 
two-driver buses would deviate more from the ideal and would be more 
dangerous. 
4a. Without hesitation, the researcher should carry out the calculations again. The 
product-moment correlation cannot have a value less than -1.0 or greater than 
+1.0. 
4b. Assuming that the calculations are correct, this regression coefficient 
suggests that I.Q. can be estimated to some degree if we know the student’s GPA 
(because the coefficient is different from zero), and in particular higher GPAs are 
associated with higher I.Q.’s (because the coefficient is positive). The fact 
that the coefficient is greater than 1.0 is not informative in this case 
because the value of an unstandardized regression coefficient depends on 
the units used to measure the variables. There are no mathematical bounds 
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at all on an unstandardized coefficient. Note that the regression coefficient here 
might be useful for transforming one kind of information into another, yet does 
not directly represent the effect of a causal operator; that is we do not suppose 
that an operator exists for transforming GPAs into levels of I.Q. 

5. 

 

The last step is possible because the mean is a constant: 

or, alternatively: 

Because the original expression defines the variance of X, the final expression 
also defines the variance, and we see that a variance may be calculated directly 
from original measurements without first converting to deviation scores. 

 

6. 

or alternatively 
 

 

Thus a covariance can also be obtained from original measurements without first 
converting to deviation scores. 
7.  First note that X, the predicted value of a variable, is not generally a constant; 
its value varies from case to case. 

 

Because both X and e are presumed to represent deviation scores, the above can 
be converted to 
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This expression defines the variance of a variable X =  + e. Obviously the 
variance of X is equal to the variance of  plus the variance of e only if the 
middle term has a value of zero. This is true only if the covariance of  and e is 
zero; in other words, only if predicted values are uncorrelated with the errors in 
predictions. 

X̂
X̂

X̂

8. Since β is a standardized coefficient, we can suppose that all variables have 
been standardized before beginning analyses. Thereupon, the partial regression 
coefficient can be interpreted as the result of three separate regression analyses. 
First, we regress father’s occupational status on son’s education in order to define 
a set of residual variations in father’s status that cannot be “postdicted” from 
son’s education. Second, we regress son’s occupational status on son’s education 
to define a set of residual variations in son’s status that cannot be predicted from 
son’s education. Third, we regress the residuals in son’s status on the residuals in 
father’s status. The regression coefficient from this third analysis is the same 
thing as βSF.E. In this way we see that βSF.E measures the predictability of 
variations in son’s status that cannot be explained by son’s education, where the 
predictor variable consists of variations in father’s status that are unrelated to 
son’s education. Because we began by equalizing the scales of all variables by 
standardization and the reported value of βSF.E is so small, we can conclude here 
that there is relatively little covariance between father and son statuses that is not 
interpretable by the level of son’s education. 
9.  Given these correlations, the standardized partial regression coefficient from 
father’s status to son’s status is 

βSF.E  =  +1.06 

There is no mathematical condition restricting the values of standardized partial 
regression coefficients to the range of the correlation coefficient. On the other 
hand, beta values outside the minus one to plus one range are fairly unusual, and 
in fact they can occur only when some of the correlations among variables are 
negative. The above beta indicates that variations in father’s status are associated 
with even larger variations in son’s status when son’s education is 
controlled. In this peculiar community the higher status fathers have sons 
with lower than average education (as revealed by the negative value of 
ρFE), and poor educations of these sons in turn are associated with lower 
than expected occupational statuses (as revealed by the positive 
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value of ρES). Thus the relationship through son’s education tends to counteract 
the direct relationship from father status to son status and the overall correlation 
is merely moderate. A variable like son’s education in this example is often 
called a “suppressor variable.” 

CHAPTER 4 

la.  Expected correlations among the variables can be obtained by path analysis. 

 v i y a 
v 1.00 .30 -.40 -.01 
i .30 1.00 -.12 .27 
y -.40 -.12 1.00 .42 
a -.01 .27 .42 1.00 

Diagonal entries in a correlation matrix are always 1.00 because they represent 
the correlation of a variable with itself or, alternatively, the variance of a 
standardized variable. Note also that correlations below the diagonal are simply a 
repetition of correlations above the diagonal. Because this is the case, a 
correlation matrix is frequently presented merely in terms of its upper or lower 
triangle of entries. 
lb. Because disturbances of a are shown as uncorrelated with anything else, the 
variance of a can be expressed as follows. 

 

 

where S represents the variance accumulated from all the specified sources. If 
you work out the full expression for the variance of a, you will see how S is 
composed and also prove that the equation is true. Because the disturbance 
variation is standardized, the equation can be rewritten 

Thus the absolute amount of explained variation is defined. To convert this to a 
proportion we divide the explained variance in a by the total variance in a. 

 
Of course, a is standardized with variance 1.00 and the above reduces to (1 - .71) 
= .29. (In general, when all variables and disturbances are being 
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treated in standardized form and a disturbance is uncorrelated with anything else, 
the proportion of explained variance can be read almost directly off the diagram. 
It is 1.00 minus the squared coefficient on the path from the disturbance term to 
the variable of interest.) The proportion of explained variance simply indicates 
the extent to which existing differences on a variable are due to existing 
differences in specified causes. The figure does not necessarily set any bounds on 
how much a variable can be changed; for example, suppose that all prisons have 
relatively high rates of inmate aggression. Variations in prisoner isolation, type of 
conviction, and age are known to account for only a portion of the variations 
around the overall average. Nevertheless it is still theoretically possible to 
change, say, visitation policies in any prison so drastically that its aggression rate 
might be cut by half, a third, or more. (Alternatively, it should be possible to 
increase i, v, or y so that aggression rates double, triple, quadruple, or whatever.) 
The finding that i, v, and y explain just 29 percent of the variance in a does mean 
that we cannot eliminate aggression differences between prisons just by 
eliminating prison differences in inmate isolation, type of conviction, and age. 
Nevertheless, these variables could be used to eliminate the a variance by 
designing variations in i, v, or y so that their effects would cancel effects from 
unspecified sources of variation in a. This amounts to building in a negative 
correlation between ua and i, v, or y. In practical terms it would involve, say, 
transferring young prisoners from high aggression to low aggression prisons.  
 
lc. If a prison’s age structure is changed and the composition of its offenders is 
held constant, the impact on aggression must be solely via path (y → a). A one-
unit increase in y would lead to an expected 0.5 increase in inmate aggression. If 
the change in age structure is accomplished without regard to offender type, then 
we would expect the usual -.40 correlation between y and v to be maintained. A 
one-unit change in y probably would be associated with a -.40 decrease in v. The 
net impact on a of both changes would be 

.5 + (-.4)[.1 + (.3)(.3)] = .42 

Thus some of the expected increase in aggression due to more youthfulness is 
counteracted by the fact that now the prison contains less violent offenders.  
 
1d. A warden’s nightmare would be a remote prison (far from inmate visitors) 
devoted specially to young violent offenders. A pleasant relief for a warden 
would be a prison that had a hospital-like visitation policy and that was dedicated 
to middle-aged nonviolent local offenders. 
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2a.  The system with its newly created operators can be represented as follows (E 
is education, P is occupational prestige, I is income): 

 

where 

 

 

Using path analysis, we find 

 

Using the formula for the correlation coefficient in 3.17, we obtain 

2b. The path coefficients are the structural coefficients that account for the
correlations among variables. The values of the correlations were calculated
above. Thus it must be true that the path coefficients (represented here by q)
satisfy the following equations: 

Thus the path coefficients can be estimated directly from the correlations: 

 

[Notice that in fact (qpe)·(qip) = ρEI.] Using the original metrics, we suppose that 
both new operators are of equal importance because their structural 
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coefficients have a value of 1.0. On the other hand, with the variables 
standardized in terms of the final distributions, it might seem that the second 
operator is stronger than the first. Of course, the same operators are involved in 
both cases, which illustrates that it is not really sensible to compare coefficients 
that are based on different metrics. 
2c. This example suggests that correlations among statuses develop from social 
mechanisms for transforming one kind of status to another, provided that there 
are some preexisting variations on the source statuses. Adding such mechanisms 
to a community leaves diversity in the source statuses unchanged but increases 
the diversity in outcome statuses. Therefore we might say that the greatest 
inequalities occur on the least central statuses.  
3.  The system now is 

The loop’s return effect is L = .5 and its “return difference” is (1 - L) = .5. Thus 
the semireduced system has the following form: 

 

 

Path analysis gives the following results (recalling that σE
2 = σU(P)

2 = σU(I)
2 = 

1.0). 

Note that the loop greatly increases the inequalities in occupations and incomes. 
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The correlations are calculated from the above: 

 

(Compare these values with the correlations obtained with the system in 
exercise 2.) The correlation between E and P is less here because P now has an 
additional source of variance—UI. On the other hand, the presence of the 
amplifying loop increases the correlation of the two variables within the loop. 
4a. Path analysis defines the correlations among the indicators: 

 

The two indicators of a variable (either x or y) would correlate perfectly if both 
were determined by that variable alone. However, measurements on each 
indicator are also affected by measurement errors. The diagram indicates errors 
in one indicator are independent of errors in all other indicators. Thus the errors 
add to the variance of each indicator but contribute nothing to their covariances, 
thereby reducing their correlations. 
4b. Path analysis defines the following correlations. 

 y1 y2 
x1 .084 .105 
x2 .072 .090 

Obviously the correlations between indicators of x and y are much smaller than 
the correlation between the true scores. Ordinarily, we calculate such correlations 
from a sample of cases, and there is some suspicion that their values would shift 
a bit if another sample were used. Thus we might be inclined to view the above 
correlations as negligibly different from zero, concluding that there is no attitude-
information relation. 
4c. Path analysis can be used to define the variance of each indicator; for 
example; 
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Because all variables (including disturbances) are presumed to be standardized, 
the above equation reduces to 

Thus 51 percent of the indicator variance is due to measurement errors, and the 
value of the coefficient on the arrow from the error term to the indicator variable 
is .71. Calculations for the remaining three indicators are similar 

 

 

4d. If is unknown, the correlation between xyxρ ˆˆ 1 and y1 would be written, using 

path analysis. 

Solving for the unknown correlation between true scores gives 

 
Because all quantities on the right are supposed to be known, this provides a 
formula for estimating the true-score correlation. This procedure—dividing an 
observed correlation by validity coefficients to estimate the true correlation—is 
well known in psychometrics as the “correction for attenuation.” 
5a. The additional specification requires the addition of curved double-headed 
arrows to connect all the error terms. Each has a correlation of 0.30 attached to it. 
Application of path analysis to the revised diagram gives the following type of 
equation: 

 

Numerical results are (p1d, p2d, etc., were estimated numerically in exercise 4c) 

 x1 x2 y1 
x2 .59 — — 
y1 .28 .29 — 
y2 .29 .30 .44 

These values are larger than when there were no correlated errors. Usually 
the errors on different questionnaire or interview items will be positively 
correlated because some of the same distorting factors operate throughout 
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the data-collection period. Positively correlated errors of measurement always 
tend to increase the observed correlations among the items. 
5b.  The estimated correlation between true scores now is the following. 

 

This result might mislead us into concluding that the correspondence between 
attitude and information is perfect when, in fact, it is only modest. 
5c. The validity coefficient for this indicator is 0.7, suggesting a fairly close 
relation between true and indicator scores over most of the scale. We can surmise, 
though, that the relation breaks down at the ends of the indicator scale. All 
extremely positive attitudes, no matter how extreme, must be coded 5.0; similarly 
all extremely negative attitudes are coded no lower than 1.0. Thus the joint 
distribution of true scores and indicator scores must look about as follows: 

Over the middle range there is little relation between true scores and the 
measurement errors, but at the extremes the true scores clearly have a negative 
relation to the errors (e.g., the more positive the attitude, the more severely it is 
underestimated). Overall, this would create a negative correlation between true 
scores and measurement errors. This is generally true when a measurement scale 
is bounded so that extreme highs and lows are assigned attenuated scores. On the 
other hand, the resulting negative correlation will be small or negligible if few 
cases fall beyond the scale bounds. 
6. In the system with a stronger reward mechanism but without feedback the 
variance of Z is 
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Comparing this with the parallel result in 4.20, we see that the stronger reward 
mechanism has quadrupled the variance in statuses. In the system with stronger 
rewards plus feedback the variance of Z has the value 

Here the variance is less than doubled. In the control system accomplishments 
are lavishly rewarded, but the extreme divergences in status that would ordinarily 
result are moderated by linking success to lack of further accomplishments. This 
system might serve the functions of making persons content with their level of 
reward and, at the same time, of avoiding excessive social inequality. However, 
the control system has the dysfunction of wasting talent: 

 

 

7a. The diagram indicates that the correlation between t1 and t2 provides an 
estimate of h. 

To compute this we obtain a large number of twins and measure them all on the 
trait. Then within each pair we arbitrarily call one twin’s measurement t1 and the 
measurement of the other t2. Finally, the correlation is computed across twin 
pairs. 
7b. If twins are raised together, it is likely that they will have experienced similar 
material and social environments. Consequently we would have to modify the 
diagram to show e1 and e2 as correlated to some unknown degree. Then, however, 
the correlation between t1 and t2 is a function of both genetic and environmental 
similarities and it no longer provides an unbiased estimate of heritability alone. 
To avoid this problem researchers try to find twins who were raised in unrelated 
environments. 
7c. If intelligence is subject to any environmental determination at all, then 
theoretically it is possible to change intelligence as much as desired by 
environmental manipulations. To overcome genetic dispositions the 
environmental interventions may have to be drastic and expensive. Whether this 
is practical is a matter of social values. (Some behavioral geneticists do argue that 
a linear model is not entirely appropriate here. Environmental improvements, 
they say, would produce increases in intelligence only up to a point and then 
further improvements would have no effect.) 



 270 Answers to Exercises 

7d. The impact of measurement error can be seen by redrawing the diagram and 
distinguishing between true scores on t and the observed scores with error (as in 
exercise 4). 

 

Now the correlation between the observed scores is 

 

Because a validity coefficient is always less than or equal to 1.0 (it is the 
correlation between true scores and observed scores), the observed correlation 
will underestimate the value of h. 
7e. A heritability is basically a variation on a standardized path coefficient. If a 
population’s distributional characteristics are changing, the basis of 
standardization is also changing and heritabilities will change. In particular, an 
increase in environmental variance ordinarily will produce some increase in trait 
variance, whereas genetic variance presumably stays the same. Thus in the new 
population genetic variance will account for proportionately less of the trait 
variance and most heritability coefficients will decline. 
8. For heuristic purposes let E stand for a composite variable representing all 
early-life determinants of aesthetic values and let a be the structural coefficient 
that transforms E to aesthetic values in the college years V. Let U stand for other 
determinants of V, notably including important happenings during the teen years. 
In a general population relationships might then be represented as 

In this case the correlation between E and V indeed would reveal something 
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about the importance of a. In particular, the squared correlation, or coefficient of 
determination, is 

 

This quantity is large if a is large (assuming that the variabilities in early and teen 
experiences are roughly of comparable magnitudes). The above model, however, 
does not describe the population that was studied. Students are gated into the 
humanities partly on the basis of elevated aesthetic values and a humanities 
student who is low on E is probably high on U. One who is low on U is probably 
high on E. Thus E and U should be negatively related in this population, as 
indicated in the following diagram. 

 

The negative covariance between E and U reduces the observed covariance 
between E and V. 

Accordingly, the correlation between E and V is also reduced. Indeed, the 
observed correlation in this population might be negligible even when the value 
of a is large enough to be theoretically and practically significant. 
9.  It is likely that musical interest in adolescence selects out those who will 
obtain professional musical training and experience. Thus a high level of interest 
predicts the occurrence of operations that yield a high level of skill. The early 
interest variable correlates with later skills not necessarily because it “causes” 
skill development but because it indicates who is subject to the 
professionalization operator that transforms talent into accomplishments. Few 
persons in the lay population are subject to the professionalization operator. 
Consequently the early interest variable provides little information about later 
development of skills. 

CHAPTER 5 

1.  The variables can be organized into a recursive model only if we can arrange 
them into a hierarchical ordering of causes and effects. In addition, the 
disturbances for each variable must be uncorrelated with values of the 
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sources for that same variable. In fact, the relationships can be specified as a 
system of causes and effects without loops; the relevant discussion is presented in 
the answer to exercise 5, Chapter 1. The question of independent disturbances 
raises several different kinds of consideration. By eliminating the possibility of 
loops, however, we have already eliminated one possible source of 
nonindependence. Further considerations are illustrated below. 

Gates. Have we reason to suppose that cases in the population to be observed 
have been gated on the basis of any of the four specified variables? Conceivably. 
Sons of fathers with low occupational standings may have higher mortality rates. 
Sons whose own educations and occupational standings are low may not be 
found for interviewing. Such problems would tend to generate negative 
correlations between source variables and the disturbances of the gating 
variables. Ideally, they are corrected by extending analyses to all relevant cases, 
but this solution is not possible if differential mortality is involved. If the 
problems seem likely to bias parameter estimates seriously, then we must give up 
on recursiveness or restrict the population to cases in which father’s education 
(the primary input) is high enough so that gating on the other variables would be 
negligible. We also must consider the possibility that some unspecified source 
variable joins with a specified source to form a gate. This idea can be illustrated. 
Suppose that aggressiveness is an unspecified source of son’s occupational level. 
Suppose also that aggressive men with poor educations are more likely to be sent 
into military combat. The resulting attrition from the study population might 
generate a positive correlation between son’s education and disturbances in son’s 
occupational standing. The survivors among men with limited educations would 
tend to be relatively passive and thereby even lower in occupational level than 
expected. 

Unspecified sources. If a variable that affects two or more of the specified 
variables has been left out, it will give rise to a problem of nonindependent 
disturbances; for example, a father’s intelligence may be a determinant of his 
educational level and it may also be transmitted genetically to his son, indirectly 
affecting his educational level as well. Thus disturbances in son’s education 
would be correlated with a determinant of father’s education, creating a 
spuriously high correlation between father and son educations. If the intelligence 
variable cannot be brought explicitly into analyses, it may be deemed necessary 
to discard the notion of recursiveness in the model. 
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2.  The model is as follows: 

 

The variables are: 

x1: Father’s education. 
x2: Father’s occupational standing.  
x3: Son’s education. 
x4: Son’s occupational standing. 

The first structural equation is 

 

This implies the regression of x2 on x1 and estimation of coefficients is (see 3.32 
and 3.34): 

 

The second structural equation is 

 

which implies the regression of x3 on x1 and x2 to obtain the following parameter 
estimates (using the formulas in 3.33 and 3.34): 

 

The final structural equation is 
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and coefficients are estimated as 

 

 

3a. The regression coefficients for predicting I1 from O1 and O2 would be 
estimates of the total effects TI(1)O(1) and TI(1)0(2) (see rule II.17). In the statistical 
literature they are called “reduced form coefficients.” Note that it is appropriate 
to use ordinary least squares to estimate the total effects because I1 and I2 are 
recursively related to O1 and O2 in the reduced model. To determine whether we 
can estimate a from the reduced form coefficients we must define the expressions 
for the total effects. This involves applying Mason’s principle (rule II.16) 
because there are six loops in the original system: 

The total effects to I1 are (parallel effects to I2 are identical): 

 

Because the reduced-form regression coefficients estimate these values, we could 
derive an estimate of a by substituting their values for the total effects, dividing 
one expression by the other, and solving for a (an indirect least squares 
approach). 
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Indeed, we really have two estimates of a because the regressions involving I2 
could also be used. 
3b. If a stands for altruistic-exploitive actions and is negative, then L1 through L4 
are negative and the system now has control loops in it. (The power system 
consisted entirely of amplifiers.) The total effects in the system with controls will 
be smaller. Consequently the regression coefficients should also be smaller in 
absolute magnitude, and the signs of bI(1)O(2).O(1) and bI(2)O(1).O(2) should be positive 
rather than negative. However, coefficient a is still identified by the above 
formula. 
4a. Any conclusion that a variable does, or does not, provide an instrument for a 
relation derives from theorizing and the conclusion always remains vulnerable to 
theoretical debate. With this caveat, the procedures involved are illustrated 
below. All of the proposed instruments in this exercise are aspects of the natural 
environment. Because we intend to deal with small (nonindustrial) societies, it 
may be assumed that none of the environmental variables is determined directly 
or indirectly by the societal variables S, M, or I. Accordingly, the environmental 
variables meet one condition for serving as instruments. 

The next question is whether every conceivable chain of relations from a 
proposed instrument to S always goes through M or I. Subsistence technology is 
probably dependent partly on length of growing season. A long growing season, 
however, might produce food surpluses to support a stratification system even if a 
society had a primitive subsistence technology. Thus the growing-season variable 
can have effects on S that do not pass through M or I, as measured, and length of 
growing season cannot serve as an instrument in this problem. A similar problem 
relates to soil fertility. Most of the effects of greater soil fertility would be 
mediated by impacts on level of subsistence technology, but if we were to 
increase the fertility of a society’s land, it might gain somewhat in food surpluses 
and level of S, even if its subsistence technology were held constant. Thus 
fertility must also be rejected as an instrument. 

Note that both growing season and soil fertility would be recovered as 
potential instruments if our materialistic indicator were a direct measure of 
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food production. (Subsistence technology presumably is one of the determinants
of amount of food production.) Unfortunately, level of food production is not
easily coded from ethnographers’ reports. Alternatively, perhaps we could argue
that the “short circuit” effects mentioned in the above paragraph are negligibly
small in the societies of interest or in some specially defined subset of societies.
In this way, too, the variables might be returned to consideration as instruments. 

Severity of habitat might be correlated with subsistence technology in that
severer habitats are sometimes associated with less advanced technology (though
there is no strict determinism). This weak relation would seem to absorb any
strictly materialistic effects of a severe habitat on social structure. Yet a group
might cope with persisting, predictable habitat threats (deserts, dangerous waters,
or cliffs) by demanding strict discipline, and traditions of social discipline in turn
might nurture the development of hierarchical social structures. Thus the variable
as originally presented may have a link to S that does not pass through M or I,
and so it cannot serve as an instrument. 

On the other hand, we might focus on more erratic habitat threats in which
defense must consist of individual vigilance rather than group discipline (e.g.,
poisonous or predatory organisms, sudden storms, and travel hazards like
rockslides or cracking ice floes). Such conditions might have some inhibiting
effect on the development of subsistence technology and thus affect S through M.
These conditions might also encourage the development of acute perceptual
sensitivity and analytic power [H. A. Witkin, “A cognitive-style approach to
cross-cultural research, ” International Journal of Psychology, 2 (1967), 233-
250]. If this is associated with what sociologist Pitrim Sorokin called a “sensate”
orientation, perhaps it inhibits development of an authoritative moral ideology
supported by religion, and thereby inhibits elaboration of a hierarchical social
structure. Because it is difficult to imagine other chains of relations by which
erratic habitat threats might relate to social structure, the refined habitat variable
appears to be a feasible instrument for this problem. Its suitability then depends
on the strength of its relation to M and I. 

Accessible ore deposits would support the development of more advanced
subsistence technology in the form of metal hoes, plows, and other
implements, which in turn could substantially increase the surpluses available
to support an elaborated social structure. Metallurgy is also likely to result in
the development of improved weapons which might become part of the
subsistence technology but might also lead to new power relationships and an
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elaborated social hierarchy. Consequently we have a direct relation with S that 
bypasses M and I and precludes the use of ore deposits as a means of identifying 
coefficients in the original structural equation. Rather than give up the idea, it 
might be useful to expand the original equation by specifying weapons as a 
determinant of hierarchical social structures. With a variable that measures 
weapons development explicitly in the model, ore deposits are revived as a 
potential instrument for the relation between M and S. 

Unfortunately, though, even this would not be enough. Smelting of metals is 
likely to generate metallurgy specialists, and it could be argued that any 
refinement of the division of labor might enhance the development of a 
hierarchical social structure. Of course, we might include metal-working 
specialists explicitly in the model. Then, however, we would have added two new 
variables to the structural equation and would have to find still more instruments 
to identify their effects. 

Of the four suggested variables, only one seemed to be a feasible instrument 
(after its definition was refined). One instrument is not enough to identify the two 
coefficients in the original structural equation. The options at this point (aside 
from abandoning the problem) are three. 
 (a) Continue the search for suitable instruments to use with the equation as 
originally specified. 
 (b) Redefine variable M as food production and reconsider growing season and 
soil fertility as instruments. 

(c) Elaborate the equation to specify more of the determinants of S (e.g., 
weapons and metal specialists). The last requires definition of a still larger set of 
instruments, but the task may be easier once we are no longer restricted to 
variables that affect S only through M or I. 

4b. As we have made clear in the above discussion, defining an instrument is a 
matter of theory rather than statistics. Thus the knowledge that length of growing 
season correlates zero with S (or I) is of no value in deciding whether it is an 
instrument for the M → S relation. In particular, a zero correlation with S does 
not necessarily imply a zero correlation with the disturbances of S in the specified 
equation. 

5. Current attitudes or behavior involving alcohol do not affect a student’s 
religious upbringing or age. Alcoholism could interfere with part-time work or 
precipitate a cutoff of allowance from parents. We might assume, however, that 
such a serious and obvious drinking problem is sufficiently rare in a 
student population to be ignored. (Alternatively, a respondent could be 
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asked whether drinking had generated financial sanctions in order to eliminate 
any who have been subject to such operators.) Accordingly, the three proposed 
instruments are not affected by attitudes or behaviors, and so they meet one of the 
required conditions for serving. Next it is necessary to determine whether a 
proposed instrument’s effect on one dependent variable is always mediated by the 
other. 

A fundamentalist upbringing fosters antialcohol attitudes. Thus to be an 
instrument the variable must affect drinking behavior only by its attitudinal 
effect. Opportunities and models encouraging drinking would be absent in the 
fundamentalist home: children would be insulated from “ordinary” sources of 
drinking behavior and would be even less likely to drink than their attitudes 
would determine. Extremely fundamentalist parents might try to continue this 
insulation by insisting on restricted housing accommodations on campus, but, 
even determined parental efforts to control a student’s associates may be 
ineffectual at a large state university after the freshman year, so analyses could be 
restricted to upperclassmen to retain the instrument. Extremely fundamentalist 
parents might also refuse to send their children to a large university so that the 
students would be gated on the religion variable. This would mean that the 
relationship between fundamentalism and attitudes would be underestimated but 
would not preclude use of the variable as an instrument unless the correlation 
became zero. 

Amount of spending money would not seem to affect a student’s attitude 
toward alcohol, though it might do so indirectly by influencing how much the 
student drinks. The main problem here is that amount of spending money 
probably is not linearly related to drinking behavior. Impoverishment would tend 
to reduce drinking, while even a small amount of pocket money might be used 
occasionally for a social drink. Variations beyond that would have little 
predictive value because extra money can be utilized in so many ways. Thus the 
variable that might be of some use as an instrument would measure austerity, 
disregarding gradations in financial comfort. 

Students with austere budgets possibly avoid (or are avoided by) partying 
social circles in which drinking is regarded positively. Thus their financial 
conditions control the choice of associates who might influence attitudes apart 
from behavior. Here even the austerity variable cannot be used as an instrument 
unless friends’ norms are considered as well. 

Students can drink beer legally, but hard liquor is not made available to 
them by law until they are 21. Possibly the increased opportunities of those 
past the second legal age adds to overall drinking in the senior year so that 
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chronological age would have a relation to behavior. There seems to be no purely 
psychological mechanism that relates aging to attitudes toward alcohol. We 
would be hard pressed to specify how taking on an “adult” identity would affect 
alcohol attitudes one way or the other. College friends ordinarily are in the same 
cohort, however, and all members of a social circle would experience legalization 
of opportunity together. Consequently a student’s age would correlate with 
variations in group norms as well as with individual behavior. Again we have a 
variable that might serve as an instrument only if we consider friends’ norms 
explicitly. 

Gating mechanisms may raise additional problems of defining instruments. In 
the case of students a great deal of entrance selection is followed by selection by 
attrition in which most of the gating is related to grade-point average. It seems 
doubtful that this gating has any direct relation to attitudes toward alcohol but 
there is some possibility that it is related to drinking behavior; for example, more 
neurotic students may be the heaviest drinkers and also may drop out because of 
poor grades. Then, if neuroticism were related to, say, religious upbringing, the 
latter variable would no longer be a serviceable instrument. If some students 
drink to the point of becoming dropouts, this phenomenon would tend to create a 
negative correlation between disturbances in the behavior variable and the values 
of its sources. However, it was assumed above that this phenomenon is 
uncommon. 

At best, we now have one instrument that by itself is not sufficient to identify 
the two coefficients in the attitude-behavior loop. The other two variables could 
be returned to discussion if we considered group norms explicitly. However, 
relations between group norms and individual attitudes and behaviors probably 
are two-way, so at least one additional instrument would be required to identify 
the normative effects. 
6. To estimate all coefficients we must construct two new variables, V  and , 
by regressing V and Z, respectively, on X and Y. Note that the variables are no

ˆ Ẑ
t 

standardized (some of the variances are greater than 1.0). Hence the formula in 
3.29 is used to obtain regression coefficients. 
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To estimate a we construct V  by using the first two coefficients above. ˆ

 

Using the procedures outlined in the statement of the exercise, we then obtain the 
following quantities: 

 

From these and the given figures we calculate the regression coefficients 
estimating a and e. 

The statistics for  are defined similarly: Ẑ

 

The regression estimates of c and d are obtained by regressing V on  and X: Ẑ

 

The original variances and covariances were generated by assigning the 
following values to the parameters: 

a = .300 c = -.500 d = .400 e = .500 
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The differences between these and the above estimates are due to rounding 
errors. 

7a. To estimate a we must construct the new variable  by regressing E on S 
and U. Because these variables are standardized, the formula in 3.33 may be 
used: 

Ê

 

The relevant statistics involving  are obtained as in Exercise 6: Ê

The partial regression coefficient estimating a can be calculated from these and
the given statistics. (We must now employ the formula in 3.29 because variable

 is not standardized.) Ê

 

Similarly, to estimate c we first define the new variable  and its relevanÎ t 
statistics: 

Given these figures and the original statistics, the estimate of c is 

 

7b. Key quantities involved in obtaining an estimate of a, using the second 
model, are 
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The parallel quantities for estimating c are 

7c. Coefficient a has a fairly large positive effect in both analyses. Coefficient c 
is negative in both analyses. The estimates are not of equal precision, however. In 
particular, each of the final estimates of c is obtained by dividing a very small 
number by another very small number. With such a small sample size it is likely 
that sampling errors in the statistics will be as large as the quantities used to 
estimate c. Thus the estimates of c might be quite different if we examined a 
different sample of SMSAs. The estimates of a are less vulnerable in this way. In 
particular, because we are dividing by a fairly large number in both cases the 
estimates will not be so affected by sampling variations. Hence we might have 
more confidence in their replicability. 

Using more advanced analyses, we can estimate the probability that the true 
regression coefficients are different from zero, given just the values obtained 
from a sample. The procedures have not been presented in this book (they are 
discussed in econometrics texts). In general, though, testing the statistical 
significance of estimates lends greater objectivity to a consideration of estimation 
precision. 

The estimates of c are unreliable because neither of the proposed instruments 
is adequate from a statistical standpoint. It is not too obvious from the original 
correlations that U and M are such weak instruments. As it turns out, however, 
their correlations with I are largely spurious within the context of these models; 
that is, once we control for S or P, there is little relation left between U and I or 
between M and I. Alternatively, we might view this as a colinearity problem. The 
correlation between the predictors (rSU or rPM) is too high in relation to the 
correlation between a predictor and the dependent variable (rUI or rMI). (We use 
the letter r to signify sample estimates of a true correlation ρ.) Note that a 
collinearity problem in 2SLS does not necessarily mean that we have extremely 
large correlations between predictors. 

One of the estimates of c has an absolute value far beyond 1.0. This is 
theoretically and statistically possible. However, such values are sufficiently 
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rare in practice to serve as cues for caution. In this case it does seem to signal an 
imprecise estimate of c, as noted above. 

From a purely statistical standpoint the estimates of a seem to have some 
credibility. The two estimates are not exactly the same in value, but this is 
typical, and we could obtain a single improved estimate by using S and P 
together in a single 2SLS analysis. Alternatively, we might examine the 
difference between the estimates to help evaluate the relative worth of S and P as 
instruments, as illustrated below. 

Whatever the statistical findings, the estimates of a and c might be wrong if 
the employment of S, P, U, and M as instruments is not justified theoretically. 
The theoretical adequacy of each instrument is discussed briefly below. 

S: Minority group education and income do not affect a city’s location; 
therefore one condition for using S as an instrument is met. Nonwhites (and 
whites, too) receive less education in the South, thus justifying the connection 
from S to E. We have presumed that lower nonwhite incomes are due solely to 
poorer educations, and this seems at least conceivable. Also, however, job 
discrimination may be more serious for racial minorities in the South. This 
provides a path from region to income that bypasses education, invalidating S as 
a proper instrument. If we have improperly used S as an instrument, we should 
expect to have generated a biased estimate of a. In particular, the correlation 
between S and I should be too strongly negative to be explained by E alone, and 
if rSI is too strongly negative the estimate of a will have an exaggerated positive 
value. (This is most easily seen in terms of the identification procedure outlined 
in 5.12. An indirect least squares estimate of a is 

 

Thus the estimate of a is directly dependent on bIS.U, and this will have an 
excessively large negative value if rIS has an excessively large negative value.) In 
fact, we did find that the estimate of a, using S as an instrument, was large 
compared with the estimate that used P. 

U: We now know that this is an inadequate instrument from a statistical 
standpoint and there may be a theoretical explanation. It was assumed implicitly 
in the specification that unionization would have a significant effect on 
minority incomes, justifying the U → I path. In the original article, however, 
Hill presents two arguments about this relation. The neo-Marxist position 
is that unionization would increase minority incomes, and just the 
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opposite is argued from the classical economic standpoint emphasizing 
competition among groups. Thus we may have operations that cancel and no 
sound theoretical reason to expect a definitive V → I relation either way. 

The appropriateness of U’s specification involves other factors. Unionization 
in a city probably does not directly affect educational levels in a racial minority; 
therefore the absence of a U → E path seems plausible. The given specification 
also implies that unionization is in no way affected by education or income levels 
in racial minorities. But perhaps educated minorities work to obtain the 
protection provided by unions (E → U) or perhaps rising minority incomes are 
seen as a threat that stimulates white workers to unionize to protect their own 
jobs (I → U). Different functions of unions for minorities are implied by these 
suggestions, but either way there is a possibility that the model may be 
misspecified. Such misspecification could create errors in estimating a as well as 
c; that is, if U is not a predetermined variable in relation to E and I, we should 
not have included U in the first stage definition of . (If we had left U out, we 
would have found a larger value of a than we did.) 

Ê

P: The second model treated the percentage of nonwhites in a city as a source 
for the educational level of the nonwhite minority. The presumption is that 
schools in heavily nonwhite cities receive less support, provide poorer quality 
education, and foster dropping out. 

High average education and income among nonwhites might encourage 
immigration of nonwhites to the city, and low education and income might 
produce emigration. Thus we might have both E → P and I → P. It might be 
argued, however, that such effects are slight, sluggish, and correlated with white 
migrations as well so that for practical purposes P can be considered unaffected 
by E or I. Has P any effects on I that do not pass through E? One argument 
would be that if there is a large proportion of nonwhites the supply of labor for 
“nonwhite jobs” is large. This drives nonwhite incomes down. However, the 
inclusion of E and M should eliminate the problem. A low level of E is a more 
direct indicator than P of an oversupply of cheap nonwhite labor, and M is a 
reasonable indicator of the demand for blue-collar workers. Thus it seems fairly 
unlikely that changes in P will affect I aside from changes in E or M. 

M: It is doubtful that minority group incomes have much influence on 
the amount of manufacturing in a city. Manufacturers have substantial 
capital investments and need to stay close to basic resources and markets, 
so in the short run, the amount of manufacturing in a large city is not 
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much affected by normal variations in wages (white or nonwhite). For similar 
reasons nonwhite education levels should have little effect on the proportion of 
persons employed in manufacturing. Nonwhites conceivably could educate 
themselves out of factory work, but the jobs will remain and someone will take 
them. A large amount of manufacturing in a city might provide jobs that entice 
nonwhites away from school, thus lowering the nonwhite educational level. 
However, such an effect occurs through I and confirms the theoretical 
appropriateness of M as an instrument. 

This discussion suggests that the instruments in the second model are more 
theoretically plausible than those in the first. Nevertheless, this is an appropriate 
time to restate the caveat: better theorizing might lead to different conclusions. 

 
8. Using the formulas in 5.23, we obtain an estimate of a: 

 

 

An estimate of c follows: 

We again arrive at the conclusions that a is substantially positive and that c has a 
value less than, or maybe equal to, zero. 

All of these results depend on quite a small sample of cities, and it might be 
objected that in no case did we have thoroughly satisfactory instruments. Thus to 
maintain absolute rigor we should refuse to conclude anything at all. On the other 
hand, we do reach essentially the same conclusions with three different models 
that involve somewhat different theoretical assumptions. Suppose, in addition, 
that this is the best information we have and that important policy decisions are 
soon to be made. Then wisdom might require transcending absolute rigor. 

All three analyses suggest that improving the educational level of 
nonwhites increases average nonwhite incomes. All analyses also suggest 
that demands for higher wages will have effects limited to just average income 
at best. If average nonwhite income goes up, there is no indication that 
education will improve; in fact, there is a hint of the opposite: in American 
society, as constituted in 1960, high wages may have been enticing nonwhite 
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youths away from continuing their educations. Thus working to improve 
nonwhites’ educations would seem to be the best strategy for raising nonwhites’ 
overall socioeconomic status. 
9. The estimate of the disturbance covariance based on imprecise measures can 
be defined in terms of the statistics for true variables: 

Thus the estimate is biased because (aside from sampling variations) it equals the 
true value minus the quantity ( ). The variance of errors in measuring Y is 
always positive. Hence the estimated covariance between disturbances will be too 
small when coefficient b is positive (perhaps even spuriously negative). The 
estimate will be too large when b is negative. 

2
Fbσ

Unbiased estimates of disturbance covariances sometimes are examined to 
determine whether key variables have been left out of the system specification. 
However, if variables were measured imprecisely, estimates of disturbance 
covariances are biased (even though estimates of structural parameters are not). 
In particular, their values depend on measurement errors as well as on the true 
values of the disturbance covariances. Thus we could err in interpreting them 
simply from a theoretical standpoint. 

This conclusion is generally true for more complicated systems estimated by 
the 2SLS procedure. The problem can be overcome by using instrumental 
variables, multiple indicators, and full-information estimation procedures to solve 
simultaneously for the structural coefficients, the disturbance covariances, and 
the indicator validities. (See the Jöreskog articles in the chapter references.) 

CHAPTER 6 

 

1a. 

1b. Because levels of federal funding are directly dependent on G, we can
suppose that the manifest function of the funding agencies is to encourage
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expansion of research on a topic. But examination of the flowgraph reveals that 
although the agencies do provide short-term amplification (a six-year return 
time), they also impose a long-term, or higher order, control loop on the system 
(with return time of ten years). Thus they serve the latent function of limiting the 
amount of research on a topic. This effect actually derives from the concern with 
growth. To the extent that concern is with sustained achievement rather than 
growth coefficient a’GP approaches zero in value and the control loop disappears. 
lc. The shortest return time for R is via loop (RP)—five years. 

 

2a. 

2b. The other two difference equations are the following. 

 
Time I R P F 

2 0 0 0 0 
3 0 0 0 0 
4 0 0 1 0 
5 0 0 0 1 
6 0 1 0 0 
7 0 1 0 0 
8 0 0 0 0 
9 0 0 1 -1 

10 0 0 1 1 
11 0 0 0 1 
12 0 2 0 0 
13 0 1 0 0 
14 0 0 0 -1 
15 0 0 2 -1 
16 0 -1 1 2 
17 0 1 0 1 
18 0 3 0 0 
19 0 1 -1 0 
20 0 0 1 -3 

2c. 
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Note that the original impulse ultimately produces periods of sustained research 
activity. Note also that the control loop creates oscillations such that research and 
publications sometimes drop below their “average” level. The system appears to 
be unstable (compare years 6, 12, and 18). However, the heuristic choice of 
values for the coefficients did create unrealistic return effects for the loops. 
3a. There are three equations: 

 

3b. The value of Qt can be expressed in terms of earlier quantities: 

 

Note that the same process could be carried out again to give 

 

In fact, this could be continued indefinitely to produce a single formula that
would express the present value of Q as a weighted sum of past values of E. The
same thing could be done for all the other variables in the system to yield a
specification of the system in terms of time-series weighting patterns. The
specification of any system can be converted to this form. 

In this example it is clear that only the first two terms in the time series have
sizable weights. Hence we could say that in this system present occupational
level depends mainly on current qualifications, slightly on the credentials had
four years ago, and only minutely on earlier conditions. 
3c. Remembering that Qt = 0 for t < 0 and S0 = -.25E0 + .10I0, we get the
following, at selected times, when education is set at 10: 

t E Q I S 
0 10 5.00 2.50 -2.25 
1 10 5.00 2.62 -2.10 
4 10 5.50 2.88 -1.58 

10 10 5.55 2.92 -.15 
15 10 5.56 2.93 1.41 

3d. In this system doctor and high school dropout have about equal savings at
age 38. Thereafter the doctor pulls ahead significantly. 
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4a. Attitude in a given year is obtained by applying the formula to the values of
E, Q, I, and S in that year; for example, the attitude of a 36-year-old Ph.D. (t =
10) is 

The following is a graph of the results for both the Ph.D. and the dropout. (Points 
were calculated for every second year.) 

4b. Assuming that this system is operating on a population and that anarchists are 
strongly antiestablishment, we should search among the young educated 
(especially the unemployed) to find one. Assuming that progressives or liberals 
are neither for nor against the establishment, we might find them in almost any 
age group within the stable working class or among the middle-aged middle 
class. Persons who want to conserve the establishment might best be found 
among the elderly middle class. (Wealth without education, in youth and even 
more in old age, should also produce conservatives.) According to this model, it 
is doubtful that we would find many radicals of any kind in the stable working 
class. The time graphs for persons in this class stay near-neutral throughout their 
working careers. 
5a. The formulas given in the problem can be used to estimate the values of It, Lt, 
and Dt from values of Pt, Pt-1, Pt-2, Pt-3, Pt-4, and Pt-5. Because 
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P has a value of 1.0 at all of these times, the estimates are simply the sums of the 
coefficients in each formula: 

It = .50 + 0.0 + .08 -.03 + .02 -.01 
 = .56 
Lt = 0.0 + .20 -.06 + .05 -.03 + .02 
 = .18 
Dt = 0.0 + 0.0 + .08 -.03 + .02 -.01 
 = .06 

 

5b. For a static analysis we ignore the zs in the flowgraph, in which case the 
values of the variables are 

These results suggest that if the system input is held constant for six time periods 
we would make little error in assuming equilibration. 
6a. The values of I0 and D-1 can be defined from the values of P back through t = 
-5 by using the formulas given in exercise 5: 

The definition is satisfied only when D-1 is large and I0 is small or when (D-1 - I0) 
is large. 

 

This quantity will be large when P0, P-2, and P-4 are small and P-3 and P-5 are
large. Thus the “ideal” historical pattern for reformation in the system is as
follows: a period of economic boom and then a recession, another boom followed
by another recession, then a period in which the economy may do anything,
followed by a severe recession in the present. 
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6b. We now want the quantity (D-1 – L0 – L1) to be large. 

 

 

Thus this second kind of reformation would be expected when there is a 
recession, an economic boom, then a period in which the economy does not 
matter much (so long as it is not in a severe recession), followed by two periods 
of recession. 

Even here it is evident from the strong weighting of P0 and P1 (neither of 
which influences D-1) that most of the changed legislation is due to economic 
conditions that weaken the influence of elites rather than to civil disturbances. At 
the same time it is clear that the overall pattern defining “reformation”—here, as 
in the first case—arises from oscillations in production surpluses. If surpluses 
could be held constant over time, the pattern defining a reform would not occur. 
Of course, such “findings” apply only to the system as specified. Inclusion of 
additional variables or changes in the structural coefficients and time delays 
could lead to different conclusions.  
7a. The variance is 

that is, the observed variance in attitudes is the sum of the variance due to stable 
differences among people, plus the variance among people due to recent 
experiences. Note that the second term does not measure deviations from stable 
attitudes. Rather it indicates the deviations from stable attitudes after they have 
been adjusted for any momentary trend in the population due to synchronized 
recent experiences; for example, everyone might recently have had experiences 
that produced positive transients. Then all attitudes would tend to be elevated 
from their stable components and transient variability around the average level of 
elevation might still be small. 

The stable component would tend to be large in a society in which a variety of 
distinct socialization and pattern-maintenance programs is maintained. The 
transient component would tend to be small if people’s experiences with the 
attitude object were rare, weak and impersonal, and synchronized. Thus we 
might guess that stable variance would predominate in a segmented, pluralistic 
society in which contact with the attitude object occurred mainly 
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through the mass media. Transient variance would dominate in a group with a 
homogeneous culture in which people have frequent uncoordinated personal 
encounters with the attitude object. 
7b. Selective exposure implies that persons’ stable attitudes determine to some 
degree the kinds of experiences they have, and thus there would be some 
coordination between stable attitudes and transients. This might be represented as 

 

Now the variance of AN is 

 
Because the covariance is positive, the overall variance in net attitudes is 
increased (assuming that variability in recent experiences within the population is 
unaffected by selective exposure). 
7c. Given the assumptions in this problem, the determination of net attitudes at 
time one and time two (ignoring selective exposure) could be represented as 

 

The correlation between net attitudes at the two times is 

 

Assuming that variability in transients is the same at both times, this equation 
reduces to 



293 Answers to Exercises (Chapter 6) 

 
from which we can write out and expand the difference equation for DB: 

Thus the correlation is equal to the proportion of variance in net attitudes that is 
determined by the stable component (provided that the stable components really 
do not change and the transients are uncorrelated over time). 

Social conditions that would produce a large proportion of stable variance 
were indicated in answer (a). These same conditions will yield the most 
successful prediction of behaviors dependent on AN(2) from measurements of 
earlier attitudes AN(1). 

 
8. The graph can be reduced to 

 

We could interpret the end result as follows: the present level of conformity to a
behavioral norm is a cumulative product of reinforcement history. This might
suggest that a behaviorist approach provides a time-series perspective on the
systems studied cross-sectionally by cognitive psychologists or by specialists in
group dynamics. 
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